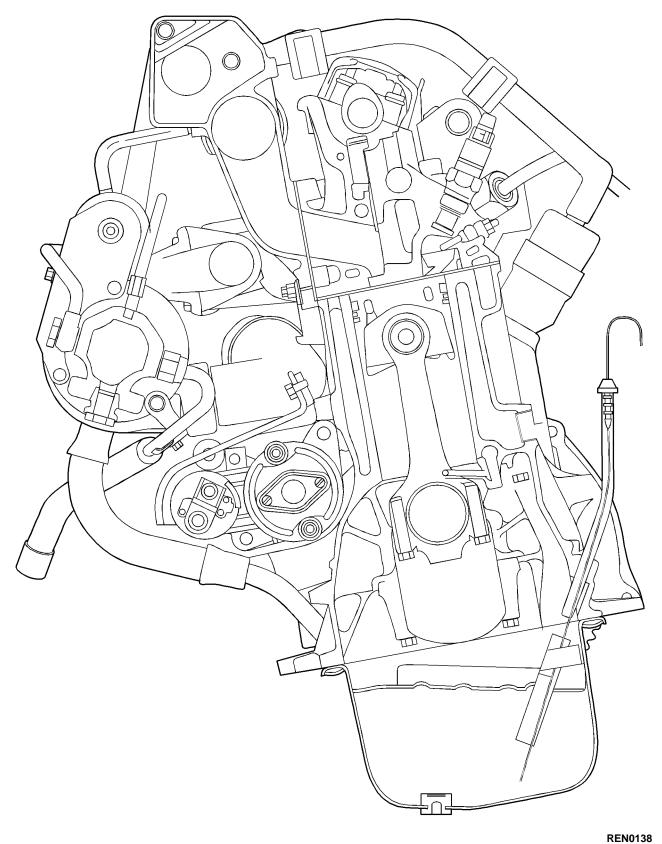
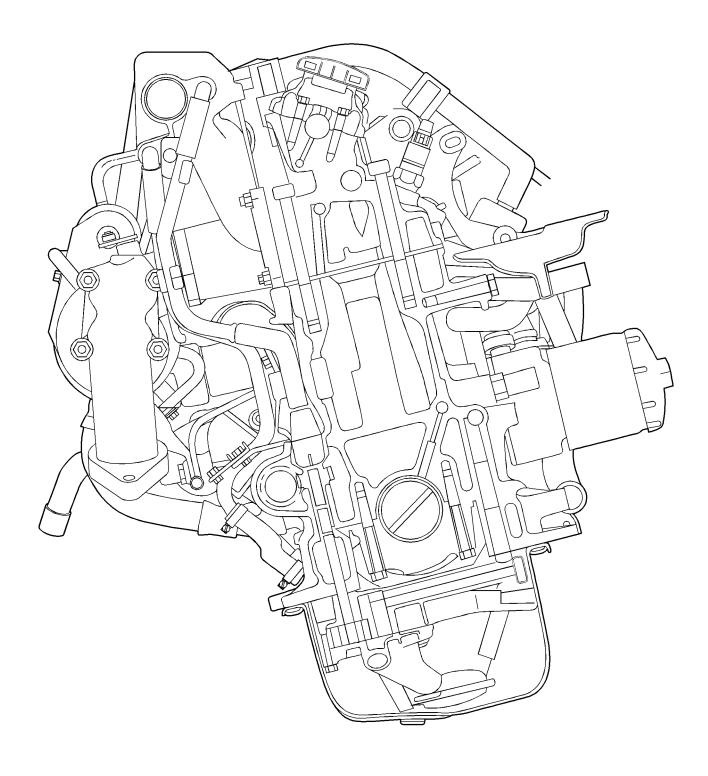

ENGINE F8QT SERIES

CONTENTS

G	ENERAL INFORMATION	11A-0-3
1.	SPECIFICATIONS	11A-1-1
	SERVICE SPECIFICATIONS	11A-1-1
	TORQUE SPECIFICATIONS	11A-1-5
	FORM-IN-PLACE GASKET	11A-1-8
2.	SPECIAL TOOLS	11A-2-1
3.	CRANKSHAFT PULLEY	11A-3-1
4.	TIMING BELT	11A-4-1
5.	WATER PUMP	11A-5-1
6.	THERMOSTAT	11A-6-1
7.	WATER HOSES AND PIPES	11A-7-1
8.	ENGINE COOLANT TEMPERATURE SENSOR	11A-8-1
9.	GLOW PLUGS	11A-9-1
10	D. TURBOCHARGER	11A-10-1
11	1. INTAKE AND EXHAUST MANIFOLDS	11A-11-1
12	2. ROCKER COVER AND CYLINDER HEAD	11A-12-1
13	3. CAMSHAFT, INTAKE AND EXHAUST VALVES	11A-13-1
14	4. VACUUM PUMP	11A-14-1
15	5. OIL COOLER AND OIL FILTER	11A-15-1
16	6. OIL PAN, OIL PUMP AND OIL JETS	11A-16-1
17	7. INTERMEDIATE SHAFT AND INTERMEDIATE	
	SHAFT BEARINGS	
	8. FUEL INJECTION NOZZLE	
	9. FUEL INJECTION PUMP	
	0. PISTONS AND CONNECTING RODS	
	1. PISTONS AND PISTON PINS	
	2. FLYWHEEL	
23	3. CRANKSHAFT AND CYLINDER BLOCK	11A-23-1


NOTES

GENERAL INFORMATIONSECTIONAL VIEW OF ENGINE



REN0137

SECTIONAL VIEW OF ENGINE

SECTIONAL VIEW OF ENGINE

REN0139

Description		Specifications	
Туре		F8QT diesel engine	
Number and arrangement of	of cylinders	4 in-line	
Combustion chamber		Swirl chamber	
Total displacement		1870 cm ³	
Cylinder bore × stroke		80 × 93 mm	
Compression ratio		21	
Valve mechanism		Single overhead camshaft	
Number of valves	Intake	4	
	Exhaust	4	
Valve timing	Intake opening	0° BTDC	
	Intake closing	18° ABDC	
	Exhaust opening	41° BBDC	
Exhaust closing		0° ATDC	
Turbocharger		Exhaust gas turbocharger	
Intercooler (charge cooling)		Air-cooled	
Fuel injection pump		Electric with immobilizer	

1. SPECIFICATIONS

SERVICE SPECIFICATIONS

Item			Standard	Limit		
Cylinder head	Cylinder head					
Flatness of cylinder head surface mm			0.05	-		
Cylinder head gask	cet					
Gasket thickness mm	Projecting height of piston - 0.073	Number of holes; 2	1.4	-		
	Projecting height of piston 0.073 - 0.206	Number of holes; 1	1.5	-		
	Projecting height of piston 0.206 -	Number of holes; 3	1.6	-		
Cylinder block						
Cylinder diameter m	m	Class A	80.006 - 80.024	-		
		Class B	80.256 - 80.274	-		
Pistons						
Piston-to-cylinder cle	earance mm		0.021 - 0.055	-		
Standard, class A			79.971 - 79.985	-		
Standard, class B			80.221 - 80.235	-		
Piston rings						
Height mm		Тор	2.5	-		
		Bottom	2	-		
		Oil	3	-		
Axial clearance in pis	ston groove mm	Тор	0.030 - 0.065	-		
		Bottom	0.030 - 0.065	-		
		Oil	0.030 - 0.065	-		
Fitted gap (in cylinder) mm		Тор	0.30 - 0.40	-		
		Bottom	0.25 - 0.40	-		
			0.25 - 0.50	-		
Piston pin						
Diameter mm			26	-		

Item			Standard	Limit
Camshaft				,
Cam height		Intake	8.5	-
		Exhaust	10.34	-
Camshaft end play n	nm		0.048 - 0.133	-
Radial clearance mm	ı		0.050 - 0.150	-
Valves				,
Valves clearance	Checking	Intake	0.15 - 0.25	-
mm		Exhaust	0.35 - 0.45	-
	Adjusting	Intake	0.2	-
		Exhaust	0.4	-
Valve diameter mm	•	Intake	36.22	-
		Exhaust	31.62	-
Valve seat angle		Intake	60°	-
		Exhaust	45°	-
Valve seat width mm		Intake	1.8 ± 0.2	-
		Exhaust	1.8	-
Valve springs			1	,
		Loading 0 N	43.9	-
		Loading 250 N	36.8	-
		Loading 612 N	26.4	-
Tappets		,	,	,
Diameter (tolerance)	mm		35	-
Height mm			26.3	-
Clearance in cylinder block mm			0.025 - 0.075	-
Valve guides				
Inside diameter mm		8	-	
Outside diameter mm		Standard (no grooves)	13	-
		Oversize 1 (two grooves)	13.3	-
Tappet pads				
Thickness (increasin	g by increments of	0.05) mm	2.50 - 3.70	-

tem		Standard	Limit
ntermediate shaft			
nner bearing mm	39.5	-	
Outer bearing mm		40.5	-
End play mm		0.07 - 0.15	-
Crankshaft		·	
End play mm		0.07 - 0.23	-
Thrust washer thickness mm		2.30 - 2.50	-
Radial clearance (main bearings) mm		0.04 - 0.07	-
Main bearing journals		·	
Ovality mm		-	0.0025
aper mm		-	0.005
Diameter mm	Standard (blue)	54.785 - 54.805	-
	Standard (red)	54.795 - 54.805	-
	Undersize 1	54.550 - 54.560	-
Big-end bearing journals			
Ovality mm	-	0.0025	
Taper mm		-	0.005
Diameter mm	Standard	48.00 - 48.02	-
	Undersize 1	47.75 - 47.77	-
Bearing recess width mm		20.25 - 20.95	-
Relative difference mm		-	0.02
Connecting rod (big-end) bearings			
Axial clearance mm	0.22 - 0.40	-	
Radial clearance mm	0.031 - 0.075	-	
Connecting rods			
ength mm	144 ± 0.02	-	
Small end inside diameter mm	26.013 - 26.025	-	
Squareness, top/bottom mm	-	0.04	
			

Item	Standard	Limit		
Flywheel				
Axial throw measured at a radius of 80 mm m	m	-	0.07	
Oil pump				
End play mm		0.02 - 0.08	-	
Clearance, gears to pump body (backlash) mr	m	0.10 - 0.24	-	
Bearing clearance, drive shaft mm		0.024 - 0.49	-	
Number of teeth on oil pump sprocket		8	-	
Oil pressure regulator spring				
Length mm Loading 0 N		74.6	-	
Loading 10.2 N		48.2	-	
Loading 70 N		41.2	-	
Lubrication system				
Oil capacity, exclusive of oil filter L		4.8	-	
Oil capacity, inclusive of oil filter L	5.3	-		
Difference between MAX-MIN marks on dipsitck L		1.7	-	
Oil pressure with new filter and hot engine	-13 r/s (1,000 rpm)	-	200	
(min.) kPa	-50 r/s (3,000 rpm)	-	350	

TORQUE SPECIFICATIONS

Items	Nm			
Crankshaft pulley				
Crankshaft pulley bolt	120			
Timing belt				
Camshaft sprocket bolt	50			
Water pump				
Water pump pulley bolt	20			
Water pump bolt	12.5			
Thermostat				
Thermostat cover bolt	10			
Thermostat housing bolt	10			
Bleedscrew	0.6			
Glow plugs				
Glow plug	22.5			
Glow plug nut	5			
Turbocharger				
Turbocharger nut	45			
Exhaust downpipe connector nut	45			
Oil supply pipe union nut	35			
Oil return pipe union nut	25			
Coolant supply pipe banjo bolt	25			
Coolant supply pipe retaining nut	28.7			
Coolant discharge pipe union nut	25			
Coolant discharge pipe retaining nut	8			
Intake and exhaust manifolds				
EGR valve	19.5			
EGR pipe	19.5			
Oil pipe union nut	30			
Oil pipe retaining nut	8			
Manifold nut	25			

Items	Nm		
Rocker cover and cylinder head			
Rocker cover nut	5		
Cylinder head bolt	30 + 50° ± 4° + fully slacken + 25 + 213° ± 2° + (warm up) 120° ± 7°		
Camshaft, intake and exhaust valves			
Camshaft bearing cap bolt (M6)	10		
Camshaft bearing cap bolt (M8)	20		
Glow plug	22.5		
Fuel injection nozzle	70		
Vacuum pump			
Vacuum pump bolt	22		
Vacuum hose union nut	22		
Oil cooler and oil filter			
Thermostat housing nut	60		
Plug	35		
Oil cooler nut	60		
Oil pan, oil pump and oil jets			
Oil drain plug	15		
Oil pan bolt	13		
Oil pump cover bolt	12		
Oil pump body bolt	22		
Oil jet	20		
Intermediate shaft and intermediate shaft bearings			
Intermediate shaft sprocket bolt	50		
Intermediate shaft cover bolt	15		
Intermediate shaft lockplate bolt	15		
Cover bolt	15		
Fuel injection nozzle			
Injection pipe union nut	22.5		
Nozzle body	70		
Retaining nut	70		

Items	Nm		
Fuel injection pump	,		
Injection pipe union nut	22.5		
Screwed sleeve/nut assembly	90		
Nut	70		
Injection pump bolt	22.5		
Bolt	20		
Pistons and connecting rods			
Connecting rod cap bolt	45		
Flywheel			
Flywheel bolt	53		
Crankshaft and cylinder block			
Main bearing cap bolt	65		
Front plate bolt	12.5		

FORM-IN-PLACE GASKET

The engine has several areas where the form-in-place gasket (FIPG) is in use. To ensure that the gasket fully serves its purpose, it is necessary to observe some precautions when applying the gasket. Bead size, continuity and location are of paramount importance. Too thin a bead could cause leaks. Too thick a bead, on the other hand, could be squeezed out of location, causing blocking or narrowing of the fluid feed line. To eliminate the possibly of leaks from a joint, therefore, it is absolutely necessary to apply the gasket evenly without a break, while observing the correct bead size.

The FIPG used in the engine is a room temperature vulcanization (RTV) type. Since the RTV hardens as it reacts with the moisture in the atmospheric air, it is normally used in the metallic flange areas.

Disassembly

The parts assembled with the FIPG can be easily disassembled without use of a special method. In some cases, however, the sealant between the joined surfaces may have to be broken by lightly striking with a mallet or similar tool. A flat and thin gasket scraper may be lightly hammered in between the joined surfaces. In this case, however, care must be taken to prevent damage to the joined surfaces. For removal of the oil pan, the special tool "Oil Pan Remover" is available. Be sure to use the special tool to remove the oil pan.

Surface Preparation

Thoroughly remove all substances deposited on the gasket application surfaces, using a gasket scraper or wire brush. Check to ensure that the surfaces to which the FIPG is to be applied is flat. Make sure that there are no oils, greases and foreign substances deposited on the application surfaces. Do not forget to remove the old sealant remained in the bolt holes.

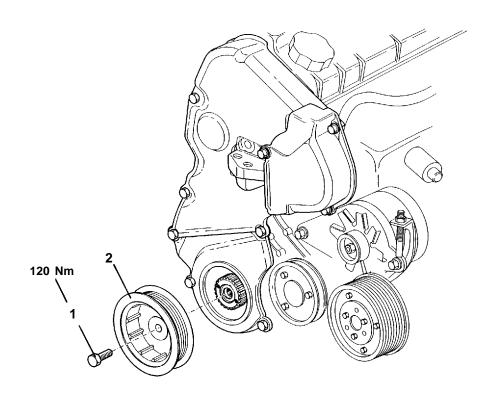
Form-In-Place Gasket Application

When assembling parts with the FIPG, you must observe some precautions, but the procedures is very simple as in the case of a conventional precut gasket.

Applied FIPG bead should be of the specified size and without breaks. Also be sure to encircle the bolt hole circumference with a completely continuous bead. The FIPG can be wiped away unless it is hardened. While the FIPG is still moist (in less than 15 minutes), mount the parts in position. When the parts are mounted, make sure that the gasket is applied to the required area only. In addition, do not apply any oil or water to the sealing locations or start the engine until a sufficient amount of time (about one hour) has passed after installation is completed.

The FIPG applications procedure may vary on different areas. Observe the procedure described in the text when applying the FIPG.

2. SPECIAL TOOLS

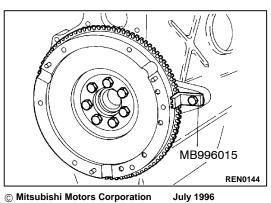

Tool	Number	Name	Use
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MB990767	Camshaft sprocket holder	Removal of camshaft sprocket
	MB991614	Angle gauge	Tightening cylinder head bolts
CAG	MB996014	Valve spring compressor	Removal of valve spring split cones
To the second second	MB996015	Flywheel stopper	Locking the flywheel
	MB996016	Reamer	Reaming valve guides
	MB996018	Slip gauge	Measuring the crankshaft end play
	MB996020	Valve guide remover	Pressing in valve guides
	MB996021	Valve stem seal remover	Removal of valve guide seal
	MB996022	Valve seat installer	Pressing in intake valve seat

Tool	Number	Name	Use
	MB996023	Valve seat installer	Pressing in intake valve seat
	MB996024	Reamer	Reaming valve guides
	MB996025	Bearing puller	Removal of intermediate shaft outer bearing
	MB996026	Bearing puller	Removal of intermediate shaft inner bearing
	MB996027	Bearing installer	Installation of intermediate shaft inner bearing
	MB996028	Bearing installer	Installation of intermediate shaft outer bearing
	MB996029	Valve guide installer	Pressing in valve guides
	MB996030	Measuring device adapter	Adjustment of fuel injection pump
	MB996031	Valve stem seal installer	Installation of valve guide seal

Tool	Number	Name	Use
	MB996032	Tension gauge	Measuring timing belt deflection
	MB996033	Tension gauge	Measuring timing belt deflection
	MB996034	Sprocket stopper	Removal of intermediate shaft sprocket
6	MB996036	Hexagon socket	Removal of injection pump sprocket screwed sleeve/nut assembly
	MB996037	Sprocket adapter	Adjustment of fuel injection pump
	MB996038	Oil seal installer	Installation of crankshaft oil seal (flywheel end)
	MB996039	Oil seal installer	Installation of intermediate shaft oil seal
	MB996040	Oil seal installer	Installation of crankshaft oil seal (timing gear end)
(F)	MB996041	Special socket	Removal of fuel injectors

Tool	Number	Name	Use
	MB996042	Oil seal installer	Installation of camshaft oil seal
	MB996043	Sprocket stopper	Locking the injection pump sprocket
	MD998715	Pulley holder pin	Retaining the camshaft sprocket (use together with MB990767)

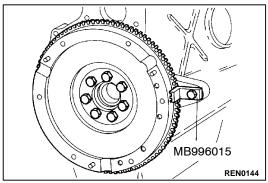
3. CRANKSHAFT PULLEY

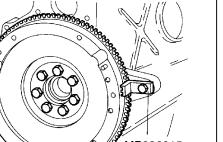


REN0143

Removal steps

- 1. Crankshaft pulley bolt
- 2. Crankshaft pulley


REMOVAL SERVICE POINT


▲A CRANKSHAFT PULLEY BOLT REMOVAL

Use special tool MB996015 to hold the flywheel during removal.

July 1996

PWEE9602

REN0145

INSTALLATION SERVICE POINT

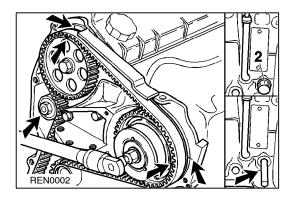

►A CRANKSHAFT PULLEY INSTALLATION

(1) Use special tool MB996015 to hold the flywheel during installation.

(2) Apply a locking agent to the screw thread of the bolt. Tighten the bolt to the specified torque.

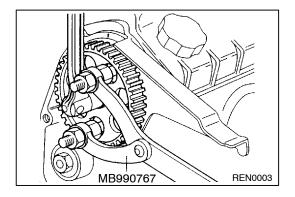
4. TIMING BELT

REMOVAL AND INSTALLATION

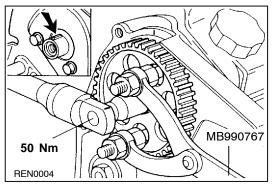


REN0001

- 1. Bolt
- 2. Bolt
- 3. Nut
- 4. Engine support bracket5. Timing gear case cover6. Timing gear case cover
- 7. Timing gear case cover

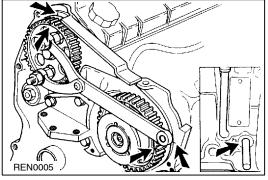

- **B** 8. Timing belt
- 9. Camshaft sprocket bolt
 10. Camshaft sprocket
 11. Camshaft sprocket key
 12. Timing belt tensioner
 13. Timing belt idler

REMOVAL SERVICE POINTS


▲A►TIMING BELT REMOVAL

- (1) Turn the crankshaft clockwise so that the piston of No. 1 cylinder (flywheel end) is at TDC, with the following marks in line with each other:
 - flywheel/clutch housing;
 - rear guard plate/camshaft sprocket.
 - Scribe a mark on the injection pump mounting bracket.
- (2) Insert an 8 mm diameter locking pin in the threaded hole of torx bolt **2** so that it engages the recess in the crankshaft web.
- (3) Slacken the lock nut of the timing belt tensioner. Remove the timing belt.

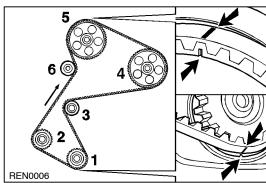
◆B CAMSHAFT SPROCKET BOLT REMOVAL

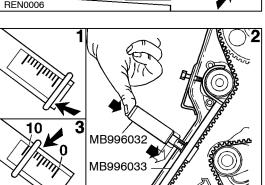

(1) Use special tool MB990767, camshaft sprocket holder with pin MD998715 and remove the retaining bolt.

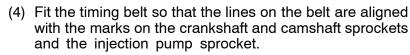
INSTALLATION SERVICE POINTS

►A CAMSHAFT SPROCKET BOLT INSTALLATION

(1) Smear the retaining bolt with a locking agent. Use special tool MB990767, camshaft sprocket holder with pin MD998715 to stop the sprocket turning and then tighten the camshaft sprocket retaining bolt to 50 Nm.

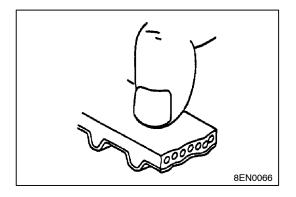



▶B**◀** TIMING BELT INSTALLATION


- (1) Turn the camshaft clockwise with special tool MB990767 until the mark on the camshaft sprocket is opposite the mark on the guard plate.
- (2) Turn the crankshaft 1/4 revolution counter-clockwise from the TDC position of No. 1 cylinder and insert the 8 mm diameter locking pin in the recess in the crankshaft web.
- (3) Align the mark on the injection pump sprocket with the mark on the mounting bracket (turn clockwise).

© Mitsubishi Motors Corporation

July 1996

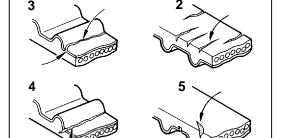


NOTE

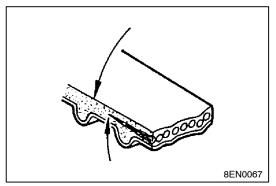
- the direction of rotation of the belt (see the arrows on the belt);
- the sequence in which the belt is fitted around the sprockets.
- (5) Fit the special tool on the timing belt and the timing belt tensioner.
- (6) Tension the timing belt with the aid of an M6 bolt.

Standard value: 7.5 mm

(7) Tighten the lock nut to the specified torque.

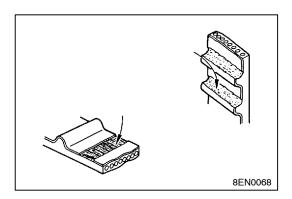


INSPECTION

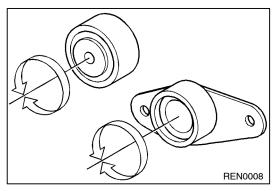

TIMING BELT

Should either of the following defects be evident, replace the belt with a new one:

(1) Hardened back surface rubber.
Glossy, non-elastic and so hard that no mark is produced when scratched with a fingernail.



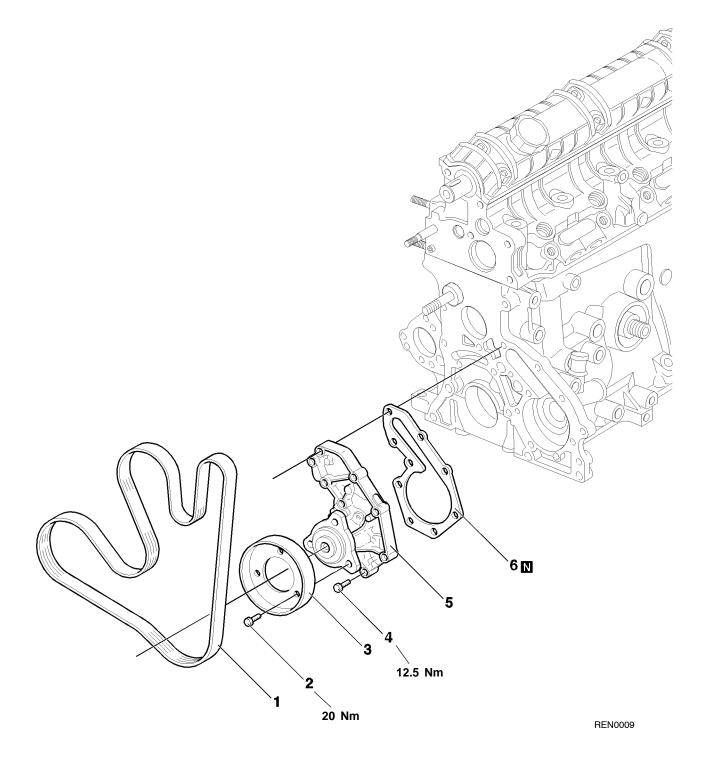
- (2) Cracked back surface rubber.
- (3) Cracked or separated canvas.
- (4) Cracked tooth bottom.
- (5) Cracks in back surface of belt.



(6) Abnormal wear on the sides of the belt. A normal belt should have clear-cut sides as if cut by a sharp knife.

8EN0044

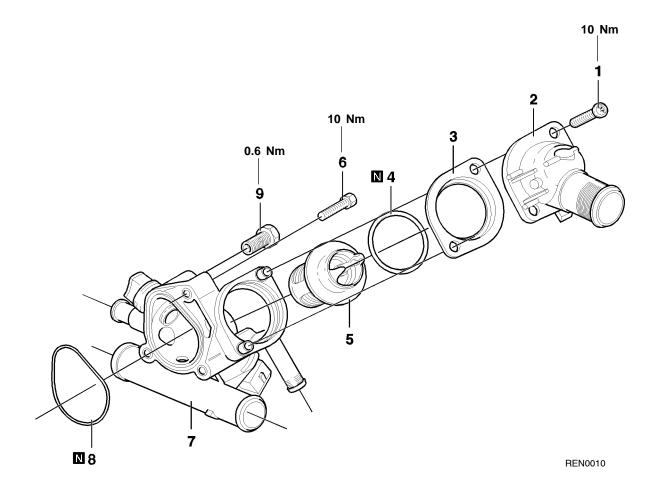
- (7) Abnormal wear in teeth.
- (8) Missing tooth.



TIMING BELT TENSIONER AND IDLER

(1) Check that the tensioner and idler rotate smoothly without excessive play or abnormal noise. Replace them with new ones if necessary.

5. WATER PUMP


REMOVAL AND INSTALLATION

- 1. V-ribbed belt (alternator & others)
- 2. Bolt
- 3. Water pump pulley
- 4. Bolt
- 5. Water pump6. Water pump gasket

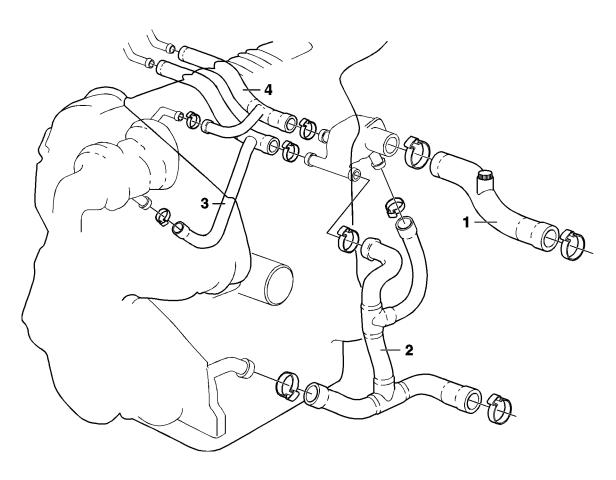
6. THERMOSTAT

REMOVAL AND INSTALLATION

Removal steps

- 1. Bolt
- 2. Thermostat cover
- Plate
- •A◀ 4. O-ring
 - 5. Thermostat
 - 6. Bolt
 - 7. Thermostat housing
- **►**A<
- 8. O-ring9. Bleedscrew

INSTALLATION SERVICE POINT

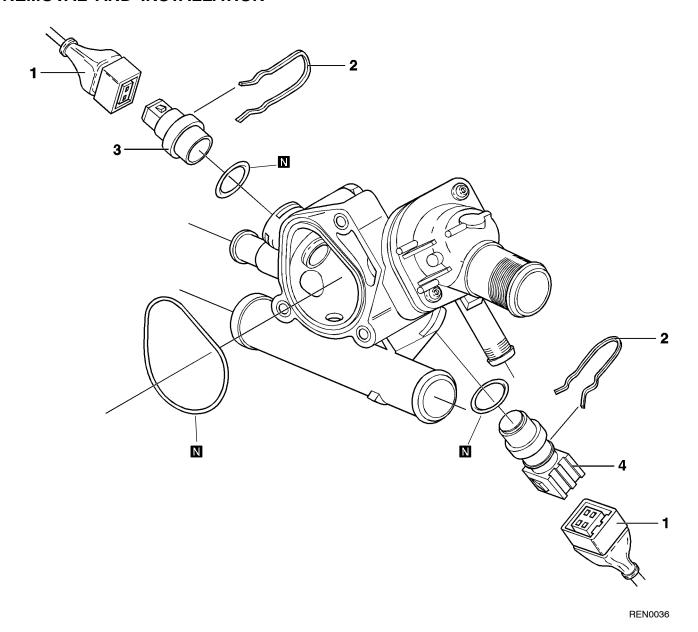

►A O-RING INSTALLATION

Caution

 If O-rings are soaked in engine oil they will swell up. Keep the O-rings 4 and 8 free of engine oil when they are being fitted.

7. WATER HOSES AND PIPES

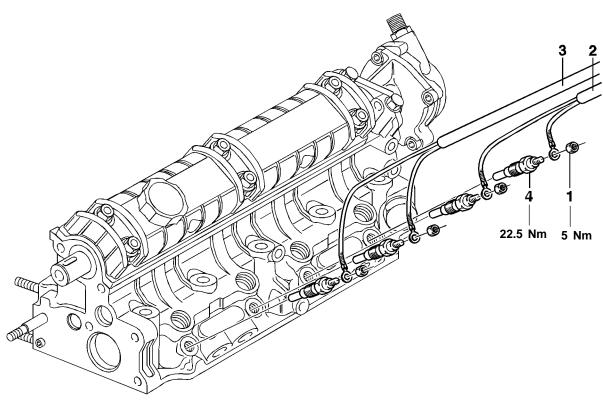
REMOVAL AND INSTALLATION



REN0035

- 1. Water inlet hose
- 2. Water outlet hose
- 3. Heater inlet hose
- 4. Heater outlet hose

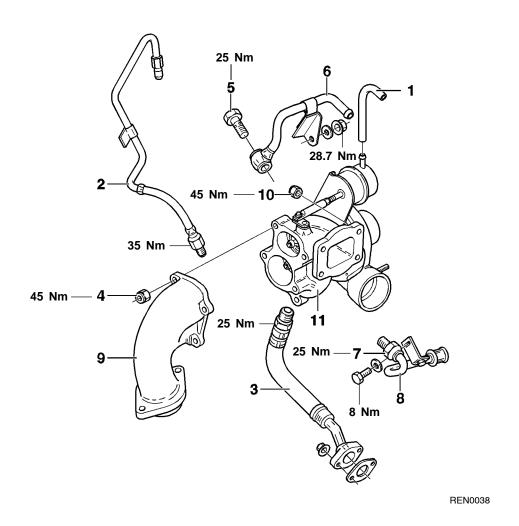
8. ENGINE COOLANT TEMPERATURE SENSOR


REMOVAL AND INSTALLATION

- 1. Wiring harness connector
- 2. Retaining clip
- 3. Temperature sensor, ECU
- 4. Temperature sensor, instrument panel

9. GLOW PLUGS

REMOVAL AND INSTALLATION



REN0037

- 2. Glow plug leads, Nos. 1 and 2 3. Glow plug leads, Nos. 3 and 4 4. Glow plug

10. TURBOCHARGER

REMOVAL AND INSTALLATION

Removal steps

- 1. Vacuum hose
- 2. Oil supply pipe
- 3. Oil return pipe
- 4. Nut
- 5. Banjo bolt
- 6. Coolant supply pipe

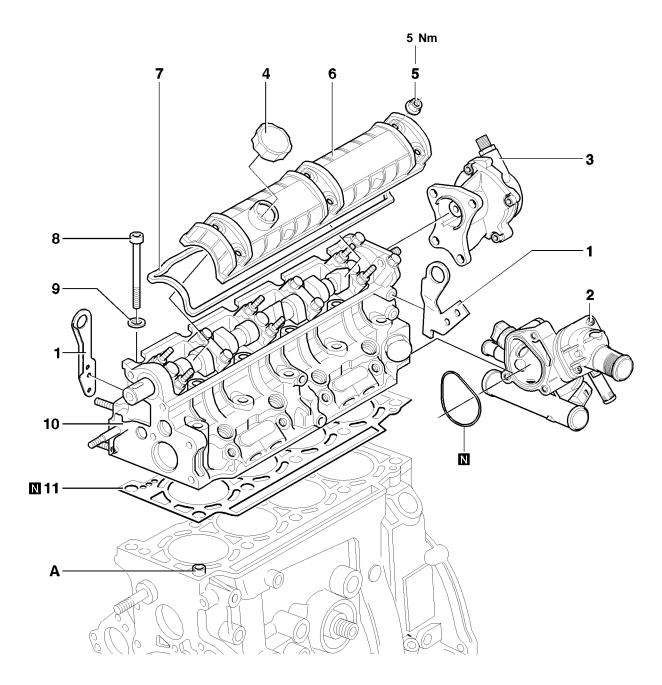
- 7. Union nut
- 8. Coolant discharge pipe
- 9. Connector-to-exhaust downpipe
- 10. Nut
- ►A 11. Turbocharger unit


INSTALLATION SERVICE POINTS

▶A**■**TURBOCHARGER INSTALLATION

(1) Before fitting the turbocharger lubricate the parts with engine oil introduced through oil filler opening.

11. INTAKE AND EXHAUST MANIFOLDS

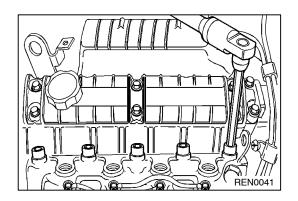

REMOVAL AND INSTALLATION

- 1. Vacuum hose
- 2. EGR valve
- 3. EGR pipe
- 4. Oil pipe from turbocharger
- 5. Vacuum hose to turbocharger

- 6. Engine hanger7. Bracket
- 8. Nuts
- 9. Intake and exhaust manifolds
- 10. Gasket

12. ROCKER COVER AND CYLINDER HEAD REMOVAL AND INSTALLATION

REN0040


Removal steps

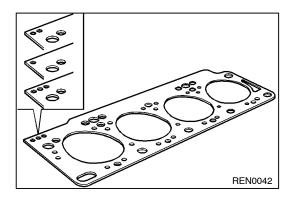
- 1. Engine hanger
- 2. Thermostat housing
- 3. Vacuum pump
- 4. Oil filler cap
- 5. Nut
- 6. Rocker cover
- **▶D** 7. Rocker cover gasket

▶C ■ 8. Cylinder head bolt9. Washer

A► ►B 10. Cylinder headB► ►A 11. Cylinder head gasket

A: Locating dowel

REMOVAL SERVICE POINTS


▲A► CYLINDER HEAD REMOVAL

- (1) Release and then remove the cylinder head bolts.
- (2) Lift the cylinder head straight up over the locating dowels and then remove the cylinder head.

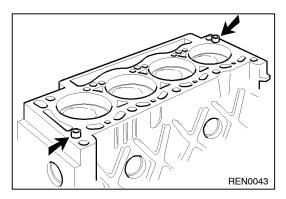
◆B CYLINDER HEAD GASKET REMOVAL

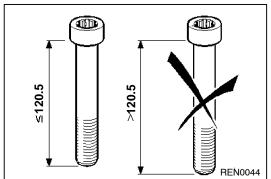
Caution

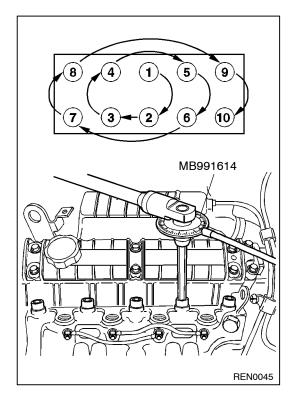
 When removing the cylinder head gasket, take care not to scratch the cylinder head or cylinder block gasket faces.

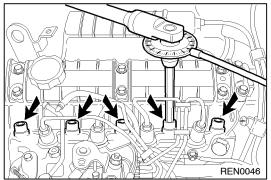
INSTALLATION SERVICE POINTS

►A CYLINDER HEAD GASKET INSTALLATION

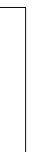

(1) Select a cylinder head gasket of the correct thickness according to the projecting height of the pistons. The available cylinder head gaskets are shown in the table below. The thickness of the gasket is indicated by the number of holes near the end of the gasket (see the illustration). Measure the projecting height of the pistons and calculate the average height. Then select a cylinder head gasket of the correct thickness from the table shown below.


Piston height above cylinder block mm	Number of holes	Gasket thickness mm
- 0.073	2	1.40
0.073 - 0.206	1	1.50
0.206 -	3	1.60


When only the gasket is to be replaced, check the hole pattern on the old gasket and select a gasket with the same number of holes.


Caution

 If a piston or connecting rod, etc. has been replaced, always measure the projecting height of the pistons because this may have changed after replacing these parts.



▶B CYLINDER HEAD INSTALLATION

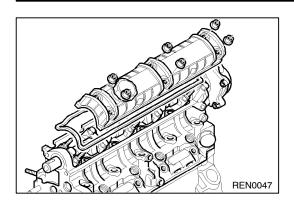
- (1) Select a suitable cylinder head gasket 11.
- (2) Rotate the crankshaft so that the piston of No. 1 cylinder is positioned a quarter-stroke past TDC.
- (3) Fit the cylinder head over the locating dowels.

▶C CYLINDER HEAD BOLT INSTALLATION

(1) When installing the cylinder head bolts, check that the length of the shank of each bolt (without the washer) is within the limit value. All the cylinder head bolts must be renewed as soon as any of them exceeds the permitted length.

Limit: max. 120.5 mm

- (2) Fit the washers.
- (3) Lubricate the bolt threads and washers with engine oil.
- (4) Insert the cylinder head bolts and fasten them finger-tight. The cylinder head bolts should be torque-tightened in three stages.

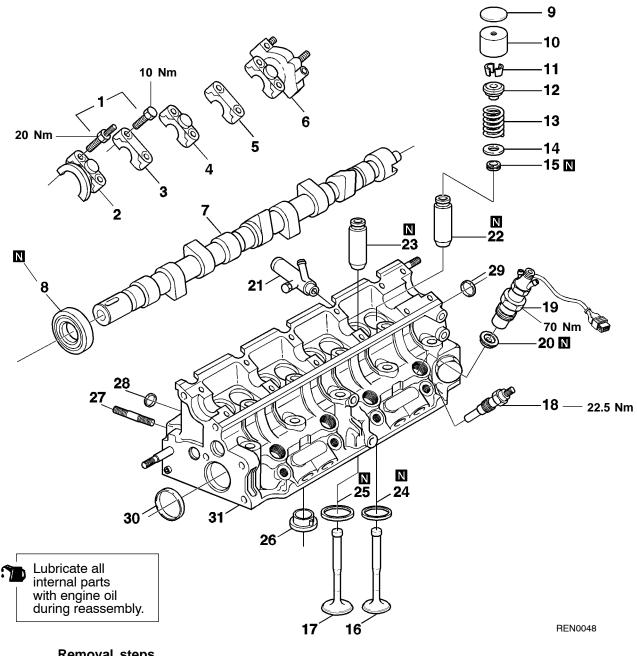

Tighten in the first stage:

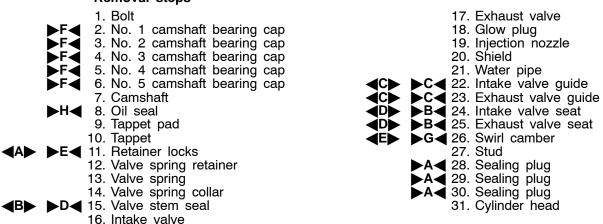
- first to 30 Nm;
- then angle-tighten to $50^{\circ} \pm 4^{\circ}$ in a single uninterrupted movement.

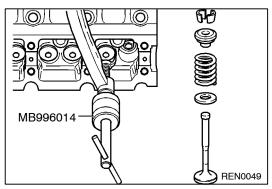
NOTE

Wait at least three minutes to allow the head gasket to bed down properly.

- (5) Now slacken all the bolts completely.
- (6) Then tighten to the second stage torque:
 - first to 25 Nm:
 - then angle-tighten the bolts to 213° ± 7° in a single uninterrupted movement.
- (7) The cylinder head can only be retorqued after letting the engine warm up to its operating temperature. Tightening torque for the third stage:
 - let the engine warm up (engine cooling fan starts to turn);
 - then angle-tighten the cylinder head bolts to 120° ± 7° in a single uninterrupted movement.

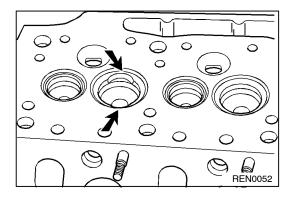

▶D**ROCKER COVER GASKET INSTALLATION**

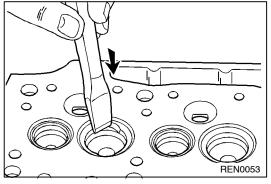

- (1) Lightly smear the corners of the rocker cover gasket with a sealant.
- (2) Locate the gasket on the rocker cover.(3) Fit the rocker cover.


Caution

Make sure the gasket is still properly located.

13. CAMSHAFT, INTAKE AND EXHAUST VALVES REMOVAL AND INSTALLATION





MB996021

REN0050

MB996020 0 REN0051

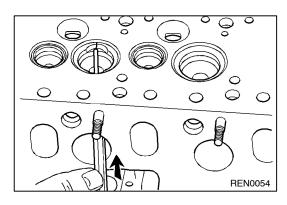
REMOVAL SERVICE POINTS

▲A► RETAINER LOCKS REMOVAL

- (1) Fit valve spring compressor MB996014 on the cylinder head 31 as shown in the illustration.
- (2) Press down the valve spring retainer 12 and remove the retainer locks 11.

◆B▶ VALVE STEM SEAL REMOVAL

Remove the seal 15 with valve stem seal remover MB996021.

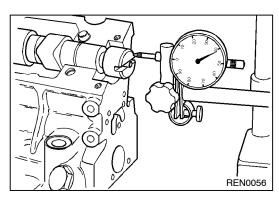

◄C▶ VALVE GUIDE REMOVAL

- (1) Support the cylinder head 31.
- (2) Press out the valve guides 23, 23 towards the valve seat with valve guide remover MB996020.


◆D▶ VALVE SEAT REMOVAL

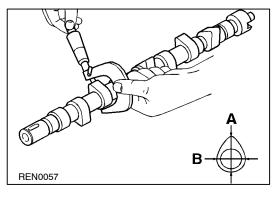
(1) Cut two recesses in the valve seats 24, 25. The recesses are cut in order to lower the tension in the valve seat.

(2) Break the valve seat into pieces with the aid of a cold chisel.

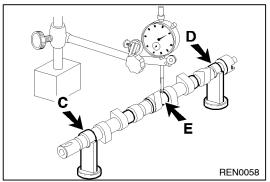


(3) Tap the valve seat through the passage and out of the cylinder head using a long drift.

⋖E▶ SWIRL CHAMBER REMOVAL


(1) Insert a round rod in the glow plug hole. Remove the swirl chamber by tapping the rod with a hammer.

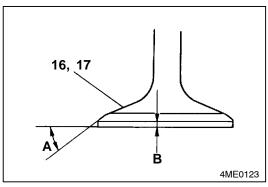
INSPECTION CAMSHAFT

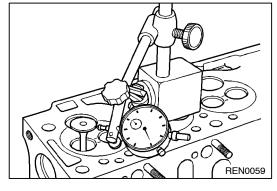

End play

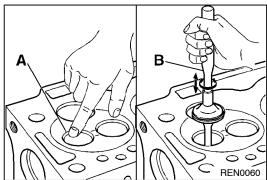
(1) Measure the end play. Fit a new cylinder head if the measured value deviates from the specified value.

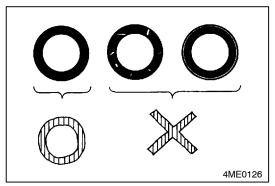
Difference between cam height and base circle diameter

- (1) Fit a new camshaft 7 if the limit value is exceeded.
 - A: Cam height
 - B: Base circle diameter


Radial play


(1) Support the camshaft 7 at No. 1 journal C and No. 5 journal D and measure the warp at No. 3 journal E. Fit a new camshaft if the limit value is exceeded.


NOTE


The true warp is half of the value indicated by the dial indicator when the camshaft **7** is rotated once.

INTAKE AND EXHAUST VALVES

Examining the valve stem for wear

(1) Replace the valve if the valve stem diameter is smaller than the limit value or if there is evidence of uneven wear.

NOTE

If the valve 16, 17 is new, it should be matched with the valve seat 24, 25 by grinding them together.

Valve seat angle and valve seat margin

- (1) Replace the valve **16**, **17** if the limit value is exceeded after correcting the valve seat angle.
 - A: Valve seat angle.
 - B: Valve seat margin.

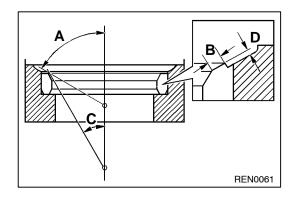
VALVE AND VALVE GUIDE

(1) Replace the part in question if the clearance exceeds the limit value.

VALVE AND VALVE SEAT

- (1) Smear a layer of Minium evenly on the valve seating A surface of the valve seats **24**, **25**.
- (2) Press the valve 16, 17 once against the valve seat 24, 25, making sure that the valve does not rotate.B: Grinding tool.

NOTE


Before checking the valve contact, examine the valve 16, 17 and the valve guide 22, 23 carefully to check whether their condition is normal.

- (3) Determine the condition of the valve seat by means of the Minium pattern on the valve **16**, **17**. If abnormal contact is established, take the following measures:
 - Small deviation: Grind the valve so that better contact

is obtained.

Large deviation: Correct or replace the valve and valve

seat.

VALVE SEAT

Valve seat width

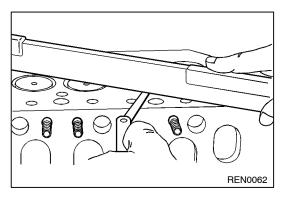
(1) Replace the valve seat 24, 25 if the limit value is exceeded.

Angle **A**: intake valve seat: 60° exhaust valve seat: 45°

The contact surface $\bf B$ must be 1.7 \pm 0.1 mm. If the contact surface is too wide, correct this with a valve seat cutter.

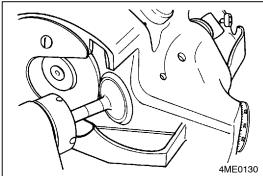
Cutter angle:

Angle **C**: intake valve seat: 45° exhaust valve seat: 30°


Caution

 The outside diameter of the cutter for the valve seat must not be more than: intake valve seat: 37.0 mm exhaust valve seat: 32.1 mm

After cutting, the dimension \boldsymbol{D} must be 0.125 \pm 0.025 mm.


NOTE

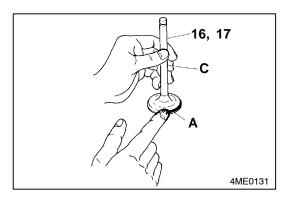
After correcting or replacing the valve seat 24, 25, the valve seat and the valve 16, 17 should be matched by grinding them together in order to obtain correct seating.

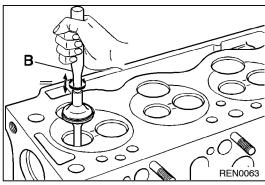
CYLINDER HEAD

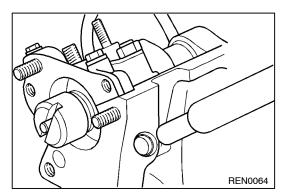
(1) Check the cylinder head gasket surface **31** for distortion. Fit a new cylinder head if the limit value is exceeded.

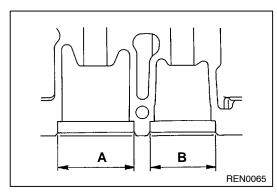
© Mitsubishi Motors Corporation Ju

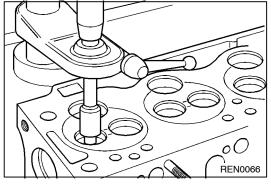
July 1996


CORRECTION


INTAKE VALVE AND EXHAUST VALVE


Caution


- The amount of material removed by grinding should be restricted to a minimum.
- Replace the valve 16, 17 if the margin of the valve seat after grinding is smaller than the limit value.
- After the grinding operation, the valve 16, 17 should be matched with the valve seat 24, 25 by lapping them together in order to obtain correct seating.


PWEE9602

VALVE AND VALVE SEAT

- (1) The valve and the valve seat must be lapped as follows:
 - (a) Smear a thin layer of lapping compound evenly on the valve seating surface **A** of the valve seat **24**, **25**.

Caution

- Make sure that no lapping compound is smeared on the stem C of the valve 16, 17.
- First use an average grade lapping compound (120-150) and then a finer grade (more than 200).
- Mix the lapping compound with a small quantity of engine oil to facilitate even application.
- (b) Tap the valve **16**, **17** a few times with the grinding tool against the valve **24**, **25** while continuing to rotate the tool slightly.

B: Grinding tool

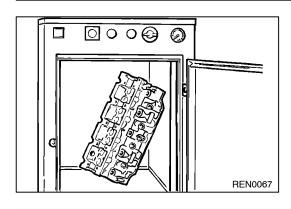
- (c) Remove the lapping compound with paraffin
- (d) Coat the seating surface of the valve seat 24, 25 with a thin layer of engine oil in order to lap the valve and valve seat with oil.
- (e) Inspect the contact surface between the valve 15, 16 and the valve seat 24, 25.
- (f) If necessary, replace the valve seat 24, 25.

INSTALLATION SERVICE POINTS

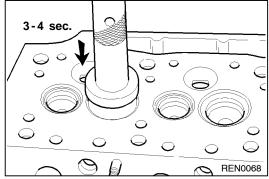
►A SEALING PLUG INSTALLATION

Drive in the sealing plugs **28**, **29**, **30** to the specified depth. When pressing in the sealing plugs **28**, **29**, **30** apply sealant (Loctite 648) to the corresponding holes in the cylinder head **31**.

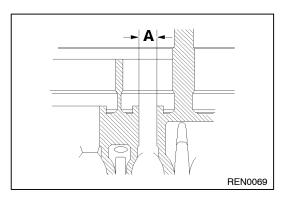
▶B VALVE SEAT INSTALLATION


(1) Measure the diameter of the valve seat bores A, B in the cylinder head 31. If a measured value does not come within the specified tolerance range, select an oversize valve seat from the table below.

Standard value:

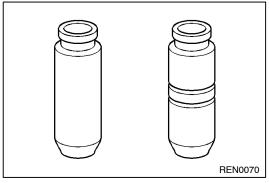

Intake valve A = 37 mm diam. Exhaust valve B = 32.1 mm diam.

(2) Ream the valve seat bores **A**, **B** in the cylinder head to the outside diameter of the selected oversize valve seats.


Oversize valve seats: Intake valve diameter 37.3 mm Exhaust valve diameter 32.4 mm

(3) Heat the cylinder head to about +100°C.

- (4) Install the intake valve seat on valve seat installer MB996022 and exhaust valve seat on valve seat installer MB996023.
- (5) Immerse the valve seats 24, 25 in liquid nitrogen so as to cool them sufficiently.
- (6) Pressing the valve seats 24, 25 with the valve seat installers MB996022 and MB996023 in the bores until they abut in the cylinder head.
- (7) After the valve seats 24, 25 have been installed, the valve seats and the valves 16, 17 must be matched by lapping.



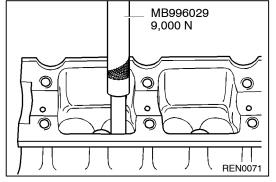
▶C VALVE GUIDE INSTALLATION

(1) Measure the diameter of the bores for the valve guides 22, 23 in the cylinder head 31. If a measured value does not come within the specified tolerance range, select the oversize valve guide.

Standard value:

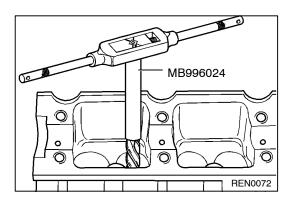
Diameter of bore (A): 13 mm

(2) Ream valve guide bore (dimension A) to the outside diameter of the selected oversize valve guides with reamer MB996016.

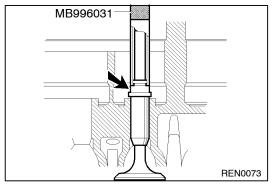

Oversize valve guide (two grooves)

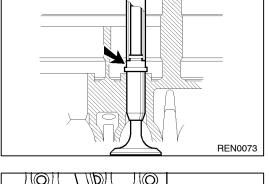
diameter = 13.3 mm

- (3) Place the cylinder head 31 on a flat surface.
- (4) Locate the valve guides 22, 23, with the taper pointing down, on valve guide installer MB996029.
- (5) Press in the valve guides 22, 23 until the installer abuts the cylinder head 31.

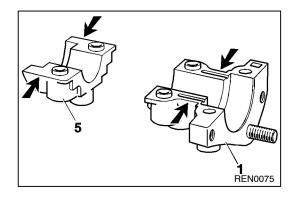

Caution

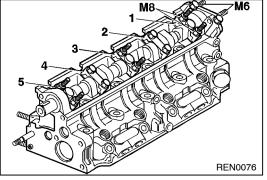
The pressure exerted on the valve guide must be at least 9,000 N. If the pressure is lower, the valve guide must be removed. Ream the valve guide bore in the cylinder head to the next oversize and press in the corresponding valve guide.




Mitsubishi Motors Corporation

July 1996




(6) Clean the valve guide inner bores 22, 23 with reamer MB996024.

MB996014 REN0074

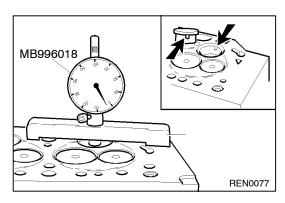
▶D**◀** VALVE STEM SEAL INSTALLATION

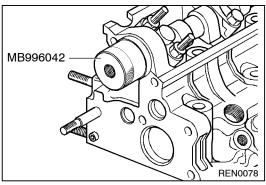
- (1) Lubricate the valve guides 22, 23 with engine oil. Introduce the valves 16, 17 through the valve guides. Locate the protective plastic cap over the valve stem.
- (2) Locate the valve stem oil seal 15. Press in the valve stem oil seal 15 vertically until it abuts the cylinder head 31 with valve stem seal installer MB996031. Remove the protective cap.

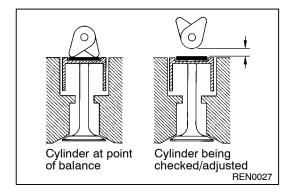
Caution

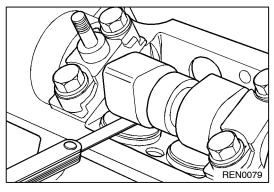
To avoid damaging the valve stem oil seal, the valves 16, 17 must not be removed again.

▶E RETAINER LOCKS INSTALLATION


- (1) Fit valve spring compressor MB996014 on the cylinder head 31 as shown in the illustration.
- (2) Press down the valve spring retainer 12 and fit the retainer locks 11.


►F CAMSHAFT BEARING CAPS INSTALLATION


(1) Apply a sealant to the No. 1 and No. 5 bearing caps.


(2) Fit the camshaft bearing caps in the correct sequence (the caps are numbered). Apply a locking agent to the upper five bolts.

Tighten the bolts to the specified torques.

▶G SWIRL CHAMBER INSTALLATION

NOTE

mm.

First check that the dowel pin is still in the swirl chamber. If the dowel pin is no longer present, a new swirl chamber **26** will have to be fitted.

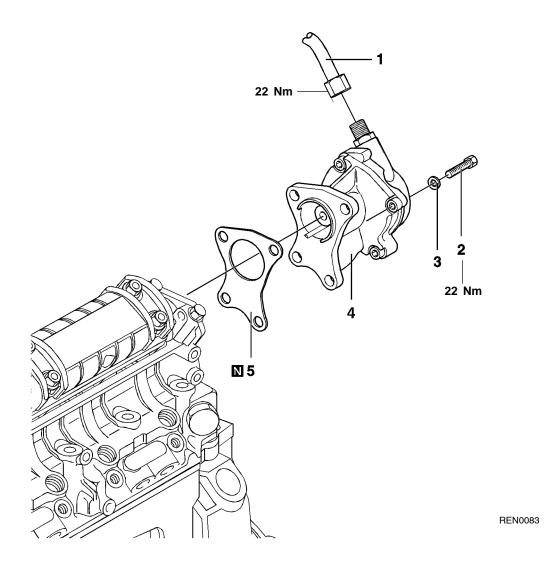
- (1) Measure the difference in height between the swirl chambers and the cylinder head with slip gauge MB996018 and dial indicator. The difference in height must be between 0.01 and 0.04
- (2) Fit the glow plugs 18 and connect up the wiring.

►H CAMSHAFT OIL SEAL INSTALLATION

- (1) Coat the lip of the oil seal with a thin layer of engine oil.
- (2) Locate the oil seal over the camshaft.
- (3) Fit the oil seal with oil seal installer MB996042.

VALVE CLEARANCES ADJUSTMENT VALVE CLEARANCES CHECK

The valve clearances have to be checked/adjusted in the following sequence:

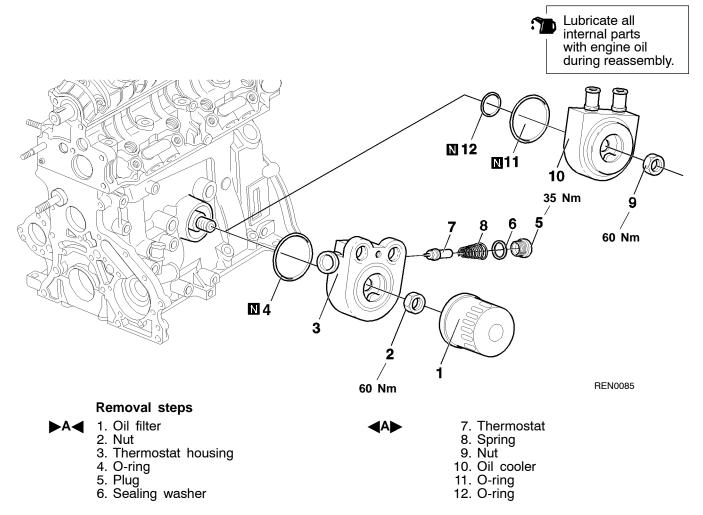

Cylinder at point of balance	Cylinder being checked/ adjusted
1	4
2	3
3	2
4	1

When changing tappet pads the piston must not be at TDC. The crankshaft must be turned on to bring it just past TDC, otherwise the valves may strike the piston when the tappets are depressed.

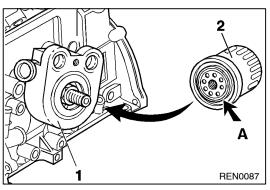
Cold engine	Checking	Adjusting
Intake valve mm	0.15-0.20	0.20
Exhaust valve mm	0.35-0.45	0.40

14. VACUUM PUMP

REMOVAL AND INSTALLATION



Removal steps


- 1. Vacuum hose
- 2. Bolt
- 3. Washer
- 4. Vacuum pump
- 5. Gasket

15. OIL COOLER AND OIL FILTER

REMOVAL AND INSTALLATION

Mitsubishi Motors Corporation

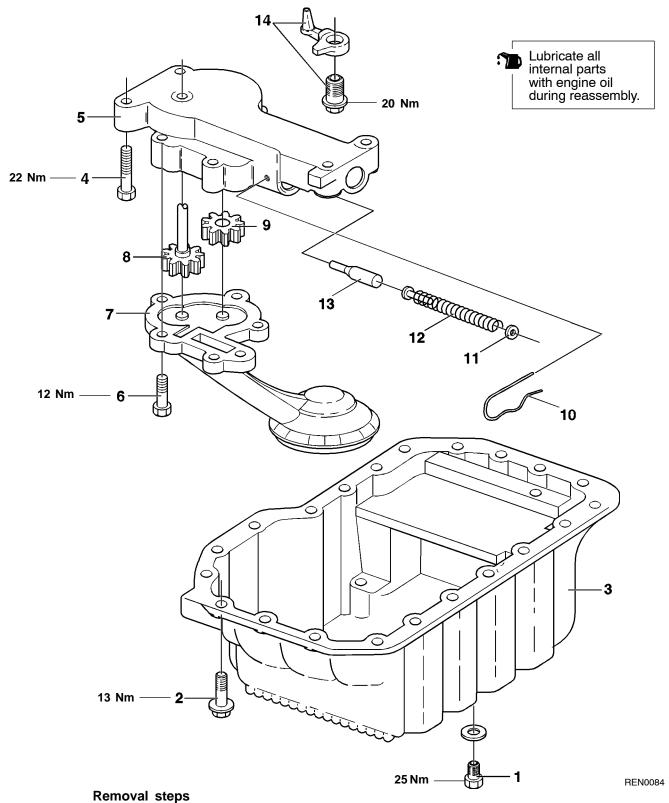
July 1996

REMOVAL SERVICE POINTS

▲A► THERMOSTAT REMOVAL

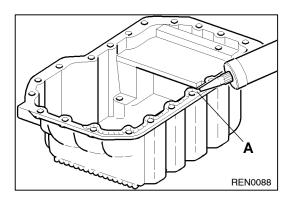
- (1) Remove the socket-head screw and sealing washer.
- (2) Remove the spring together with the thermostat.

 Check the operation of the thermostat with the aid of a hair-drier.


Renew the part in question if the specified value is not obtained.

INSTALLATION SERVICE POINTS

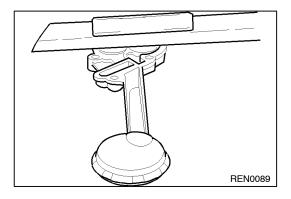
►A OIL FILTER INSTALLATION


- (1) Clean that part of the oil cooler **1** which is in contact with the oil filter **2**.
- (2) Smear a thin layer of engine oil on the O-ring A of the oil filter 2.

16. OIL PAN, OIL PUMP AND OIL JETS **REMOVAL AND INSTALLATION**

- 1. Drain plug
- 2. Bolt
- 3. Oil pan 4. Bolt
- 5. Oil pump body
- 6. Bolt
- 7. Cover

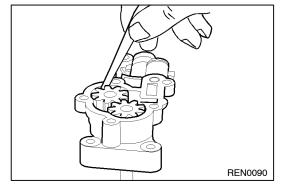
- 8. Driven gear
- 9. Idler gear
- 10. Spring clip
- 11. Washer
- 12. Compression spring
- 13. Plunger
- 14. Oil jet


INSTALLATION SERVICE POINTS

►A OIL PAN INSTALLATION

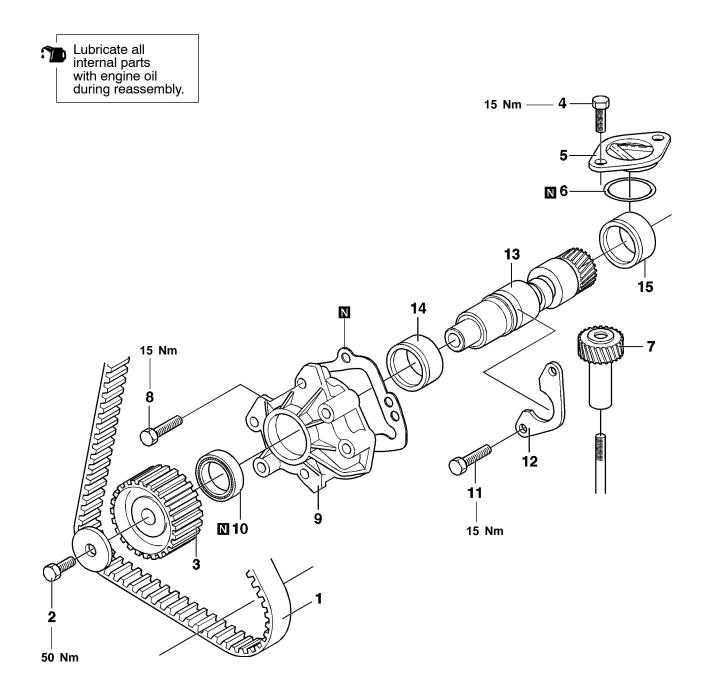
- (1) When applying sealant, make sure that the cartridge nozzle opening is not larger than 4 mm.
- (2) Apply an even, uninterrupted bead of sealant **A** to the entire circumference of the oil pan flange **3** as shown in the illustration.
- (3) Install the oil pan 3.

Caution


- Make sure that the surface to which the sealant
 A is applied is free of dirt and other impurities.
- When installing the oil pan, make sure that no sealant A is applied to other parts or in the oil passages.

INSPECTION

OIL PUMP


(1) Check the flatness of the cover with a straight-edge. Surface-sand the cover if necessary.

(2) Clearance between the gears and the pump body Fit new gears if the clearance is greater than the specified limit value.

If the clearance is still greater than the specified limit value, fit a new oil pump.

17. INTERMEDIATE SHAFT AND INTERMEDIATE SHAFT BEARINGS

REN0091

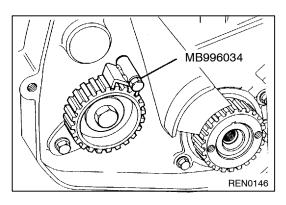
Removal steps

- 1. Timing belt
- 2. Bolt

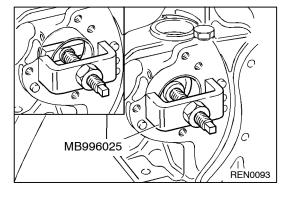
3. Intermediate shaft sprocket

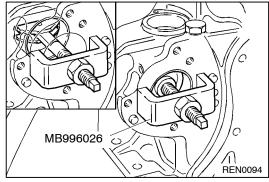
- 4. Bolt
- 5. Cover
- 6. O-ring
- 7. Oil pump drive gear
 - 8. Bolt

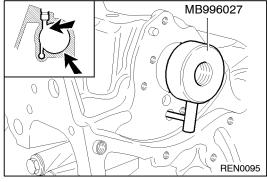
Cover


D◀ 10. Oil seal

11. Bolt


C 12. Lockplate
C 13. Intermediate shaft


C► B 14. Outer bearing


D A 15. Inner bearing

REN0092

© Mitsubishi Motors Corporation July

July 1996

REMOVAL SERVICE POINTS

▲A INTERMEDIATE SHAFT SPROCKET REMOVAL

- (1) Use sprocket stopper MB996034 to hold the sprocket during removal.
- (2) Remove the sprocket and the sprocket key.

◆B▶ OIL PUMP DRIVE GEAR REMOVAL

(1) Remove the oil pump drive gear **7** with the aid of an M12 bolt.

◆C OUTER BEARING REMOVAL

(1) Remove the outer bearing **14** with bearing puller MB996025.

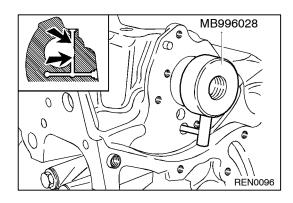
◆D▶ INNER BEARING REMOVAL

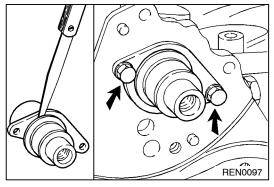
(1) Remove the inner bearing **15** with bearing puller MB996026.

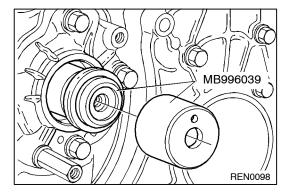
INSTALLATION SERVICE POINTS

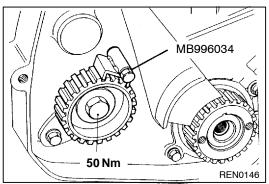
►A INNER BEARING INSTALLATION

(1) Install the inner bearing with the aid of bearing installer MB996027.


The pin of the installer must engage the oil return passage of the intermediate shaft **13**.


NOTE


Position the inner bearing with the opening at the mark on the installer.


(2) Check with a piece of wire (1.2 mm diameter) that the oil hole is aligned with the drilling in the bearing.

PWEE9602

▶B**■** OUTER BEARING INSTALLATION

(1) Install the outer bearing with the aid of bearing installer MB996028.

The pin of the installer must engage the oil return passage of the intermediate shaft **13**.

NOTE

Position the outer bearing with the opening at the mark on the installer.

(2) Check with a piece of wire (1.2 mm diameter) that the oil hole is aligned with the drilling in the bearing.

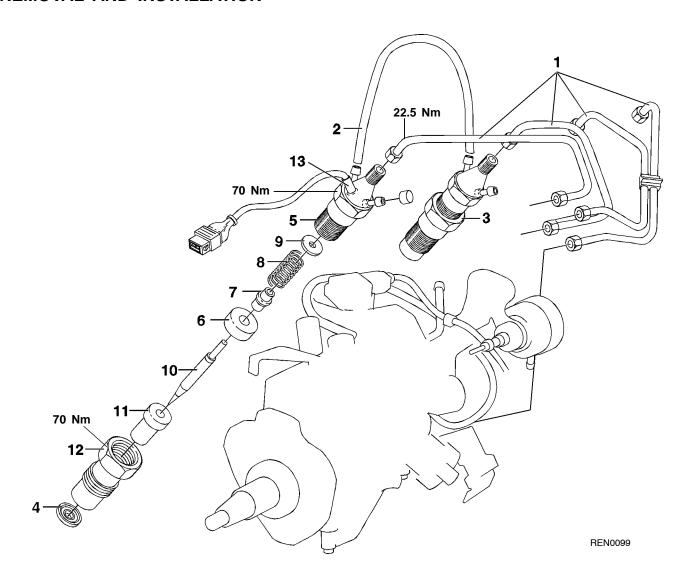
►C INTERMEDIATE SHAFT/LOCK PLATE INSTALLATION

(1) Measure the clearance between the intermediate shaft and the lock plate.

Replace the part in question if the clearance exceeds the limit value.

(2) Install the intermediate shaft together with the lock plate.

▶D✓ INTERMEDIATE SHAFT OIL SEAL INSTALLATION

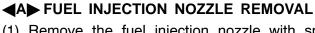

- (1) Coat the lip of the oil seal with a thin layer of engine
- (2) Locate the oil seal installer guide MB996039 over the intermediate shaft.
- (3) Locate the oil seal over the oil seal installer guide.
- (4) Fit the oil seal with oil seal installer MB996039.

►E INTERMEDIATE SHAFT SPROCKET INSTALLATION

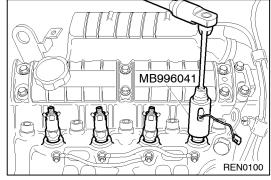
(1) Use sprocket stopper MB996034 and tighten the retaining bolt to 50 Nm.

18. FUEL INJECTION NOZZLE

REMOVAL AND INSTALLATION



Removal steps


- 1. Injection pipe
- 2. Fuel return pipe
- 3. Fuel injection nozzle assembly
- 4. Heat shield
- 5. Nozzle body
- 6. Washer
- 7. Push rod

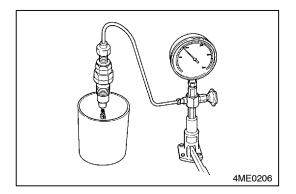
- 8. Spring9. Shim
- 10. Needle valve
- 11. Nozzle tip
- 12. Retaining nut
- 13. Nozzle needle lift sensor (for No. 1 cylinder only)

(1) Remove the fuel injection nozzle with special socket MB996041.

© Mitsubishi Motors Corporation

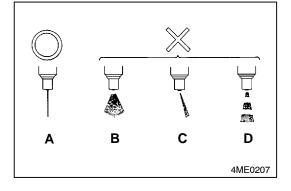
July 1996

PWEE9602


INSPECTION

FUEL INJECTION NOZZLE

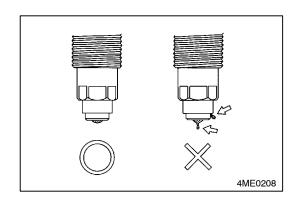
(1) Connect the nozzle tester to injection nozzle **3** and carry out the tests described below.


Caution

 Before starting the tests, operate the lever of the nozzle tester two or three times to bleed air from the nozzle.

Valve opening pressure test

- (1) Slowly push down the nozzle tester lever. The pressure gauge pointer will gradually rise and then deflect suddenly at a certain value. Make a note of the pressure at which the pointer suddenly deflects.
- (2) If this pressure value deviates from the standard value, disassemble the nozzle. Clean and reassemble the nozzle. Then adjust to the specified pressure by fitting a different shim 9.
- (3) A difference in shim thickness of 0.05 mm changes the opening pressure by 5 kPa. Shims are available in thicknesses from 1.00 to 1.95 mm, increasing by increments of 0.05 mm.
- (4) Fit a new fuel injection nozzle **3** if the pressure value is still incorrect after adjustment.



Spray pattern test

- (1) Move the nozzle tester lever with a fast short stroke (four to six strokes per second) so that a continuous spray of fuel is obtained from the nozzle.
 - A: The fuel exits the nozzle in a straight thin spray pattern (correct).
 - B: Excessive spray angle (incorrect).
 - C: Spray deflected to one side (incorrect).
 - D: Interrupted spray form (incorrect).
- (2) If necessary, disassemble and clean the injection nozzle and repeat the test. Fit a new injection nozzle if the problem persists.
- (3) Check that the nozzle does not drip after injecting fuel.

Caution

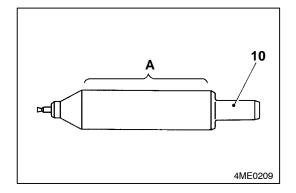
 Do not expose your hands or any other parts of your body to the injection nozzle spray.

Leakage test

- (1) Increase the pressure to 11 MPa by operating the lever of the nozzle tester. Maintain the pressure for 10 seconds. No fuel must dribble out of the nozzle during this test.
- (2) If dribbling starts within this 10 second period, disassemble and clean the injection nozzle 3 and repeat the test. Fit a new injection nozzle if the problem persists.

REMOVAL SERVICE POINTS

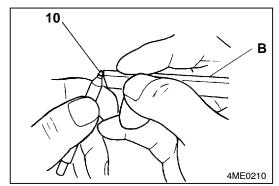
◆A▶ FUEL INJECTION NOZZLE DISASSEMBLY

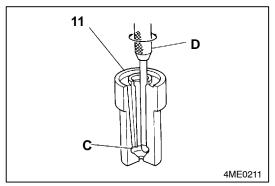

Caution

Remove any carbon deposits from the injection nozzle 3 before starting disassembly, assembly and adjustment. Before disassembly, test the fuel injection nozzle for abnormal injection pressure, abnormal spray pattern and leakage. If the fuel injection nozzle is operating correctly, it does not have to be disassembled.

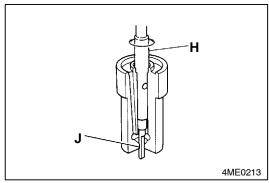
Caution

- Do not touch the sliding surface A of the needle valve
- Make sure that the original combination of needle valve 10 and nozzle tip 11 are reassembled.

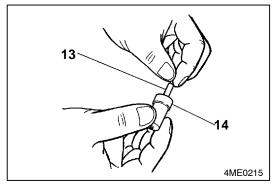


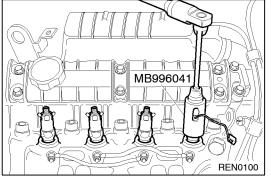

CLEANING

NEEDLE VALVE / NOZZLE TIP


- (1) Wash the removed needle valve 10 and nozzle tip 11 in clean paraffin and remove any carbon deposits with the tool. Proceed as follows:
 - (a) Remove the carbon deposits on the tip of the needle valve 10 with the small cleaning rod B (special tool).

- Do not use a wire brush of other hard metal tools for cleaning.
- (b) Remove the carbon deposits in the oil hole **C** of the nozzle tip 11 with the scraper tool D.





© Mitsubishi Motors Corporation July 1996

(c) Clean the seating **E** of the nozzle tip **11** with the special scraper tool **F**.

Caution

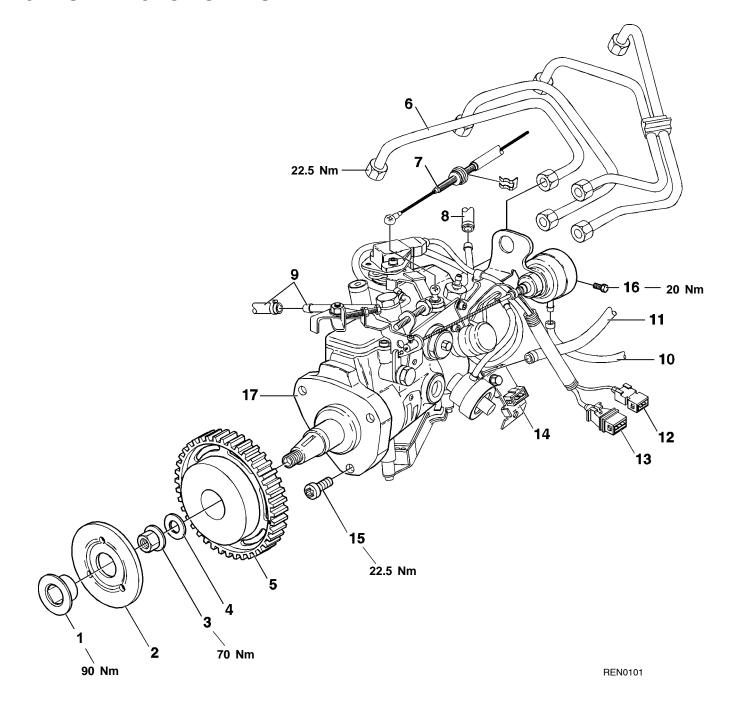
- Take care not to damage the seating face.
- (d) Use Fuso carbon deposit cleaning agent to remove encrusted carbon deposits.
- (e) Remove the carbon deposits in the injection hole of the nozzle tip **11** by rotating the needle cleaner **H** (special tool) in the injection hole **J**.

Diameter of cleaning needle: less than 1.0 mm

(f) Remove the carbon deposits on the outside of the nozzle tip 11 with the wire brush **G** (special tool).

INSPECTION

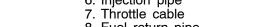
NEEDLE VALVE/NOZZLE TIP

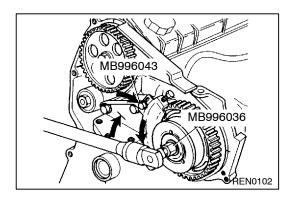

- (1) Wash the needle valve **10** and nozzle tip **11** in clean paraffin (clean oil) before reassembly.
- (2) Pull out the needle valve **10** about 1/3 of its total length, release it and check whether the needle valve slides back in under the action of gravity. (Repeat this procedure several times and rotate the needle valve slightly each time.)
- (3) If the needle valve **10** does not slide back in, wash it again and repeat the test. If necessary, replace the needle valve **10** and nozzle tip **11** as a set.

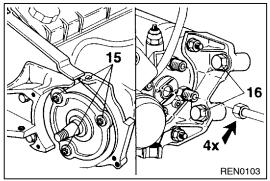
INSTALLATION SERVICE POINTS ▶A FUEL INJECTION NOZZLE INSTALLATION

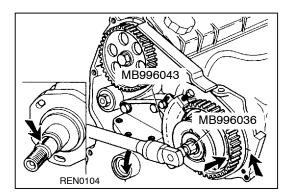
Fit new heat shields in the cylinder head with the raised edge facing towards the swirl chamber.

Fit the fuel injection nozzle and tighten them to 70 Nm. Fit the fuel return hoses on the fuel injection nozzle.


19. FUEL INJECTION PUMP


Removal steps

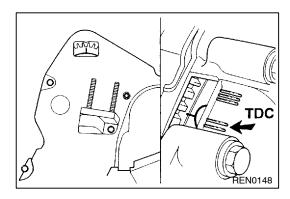

- 1. Screwed sleeve/nut assembly
- 2. Flange
- 3. Nut
- 4. Washer
- 5. Sprocket
- 6. Injection pipe
- 8. Fuel return pipe
- 9. Fuel supply pipe

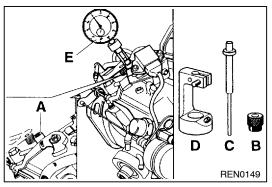

- 10. Vacuum hose
- 11. Vacuum hose
- 12. Wiring harness connector
- 13. Wiring harness connector
- 14. Wiring harness connector
- 15. Bolt
- 16. Bolt
- 17. Fuel injection pump

REMOVAL SERVICE POINTS

▲A► SPROCKET REMOVAL

- (1) Locate the sprocket stopper MB996043 between the pump bracket and the sprocket. Fasten the tool with the bolts supplied with the set.
- (2) Remove the screwed sleeve and nut assembly with hexagon socket spanner MB996036 (release by turning clockwise).
- (3) Remove the nut.
- (4) Pull the sprocket off the shaft with a gear puller. Remove the locking tool.


◆B FUEL INJECTION PUMP REMOVAL

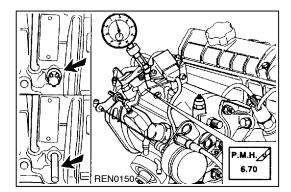

- (1) Remove the injection pipes.
- (2) Remove the three bolts 15.
- (3) Remove the two bolts 16.

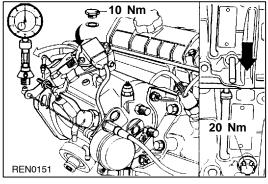
INSTALLATION SERVICE POINTS

►A SPROCKET INSTALLATION

- (1) Locate the sprocket with the key on the fuel injection pump shaft. Align the sprocket with the mark opposite the pump bracket.
- (2) Locate the sprocket stopper MB996043 between the pump bracket and the sprocket. Fasten the tool with the bolt supplied with the set.
- (3) Fit and tighten the nut to the specified torque.
- (4) Locate the flange with the screwed sleeve and nut assembly and tighten to the specified torque with hexagon socket spanner MB996036.

FUEL INJECTION TIMING CHECK MEASURING TOOL INSTALLATION


- (1) Turn the crankshaft clockwise so that the piston of No. 1 cylinder (flywheel end) is at TDC, with the following marks in line with each other:
 - flywheel/clutch housing
 - timing belt cover/camshaft sprocket.
- (2) Turn the crankshaft (clockwise) 1 3/4 revolutions.
- (3) Remove the plug A.
- (4) Fit measuring device adaptor MB996030:
 - Locate the guide bush **B** in the pump.
 - Slide the measuring pin C, which is part of the measuring tool, into the guideway of the pump.
 - Locate and secure the holder D.
- (5) Position the clock gauge **E** and make sure that the plunger is pressed in at least 0.2 mm.


Secure the clock gauge and set it at zero.

NOTE

When turning the engine with the gauge installed you might damage the clock gauge.

The measuring pin and guide bush can only be supplied and used as a set.

(1) Remove measuring device adaptor MB996030 with the clock gauge. Fit the plug with a new O-ring.

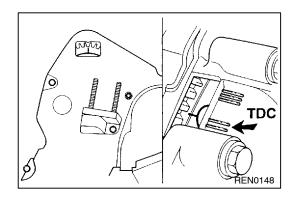
Tighten the plug to the 10 Nm.

Remove the locking pin and fit the torxbolt with a new sealing washer.

Tighten the plug to 20 Nm.

CHECKING THE INJECTION TIMING

(1) Turn the crankshaft exactly to TDC (clockwise). To achieve this:

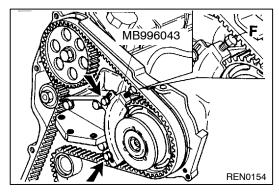

engages the recess in the crankshaft.


set value shown on the pump control arm.

- Insert an 8 mm diameter locking pin in the hole of
- torxbolt. Apply pressure just before TDC on this pin until it

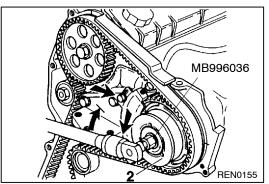
If the value is not obtained, the pump has to be adjusted.

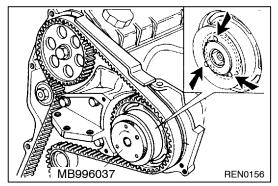
- (2) Read off the value on the clock gauge. This value should not differ more the 0.02 mm as the
- **MEASURING TOOL REMOVAL**



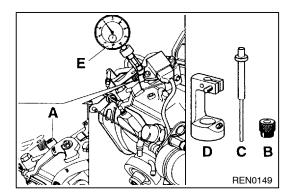
FUEL INJECTION PUMP ADJUSTMENT MEASURING TOOL INSTALLATION

- (1) Turn the crankshaft clockwise so that the piston of No. 1 cylinder (flywheel end) is at TDC, with the following marks in line with each other:
 - flywheel/clutch housing
 - timing belt cover/camshaft sprocket.


(2) Remove cover 1 and the bolts of cover 2.


(3) Locate sprocket stopper MB996043 between the pump bracket and the sprocket. Secure the tool with the two bolts supplied with the set.

Bolt **F** is not needed now.

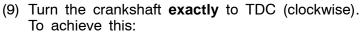


- ADJUSTMENT OF THE INJECTION TIMING
- (1) Insert Hexagon socket spanner MB996036 in the nut assembly. Loosen nut assembly (approx. 1/4 of turn clockwise) until it is possible to move the flange 2.
- (2) Remove sprocket stopper MB996043.

- (3) Fit sprocket adaptor MB996037 in the three holes of the flange.
 - Turn the tool with the flange until the jaws of the tool engage the three internal recesses of the sprocket.
- (4) Turn the tool by hand with the flange **clockwise** until the stop.
 - Remove sprocket adaptor MB996037.

- (5) Turn the crankshaft (clockwise) 1 3/4 revolutions.
- (6) Remove the plug A.
- (7) Fit measuring device adaptor MB996030.
 - Locate the guide bush **B** in the pump.
 - Slide the measuring pin **C**, which is part of the measuring tool, into the guideway of the pump.
 - Locate and secure the holder D.

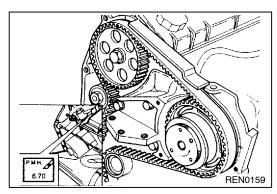
(8) Position the clock gauge **E** and make sure that the plunger is pressed in at least 0.2 mm.

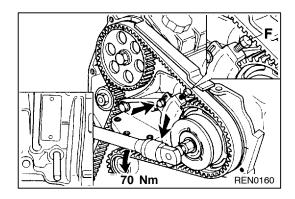

Secure the clock gauge and set it at zero.

Caution


• When turning the engine with the gauge installed you might damage the clock gauge.

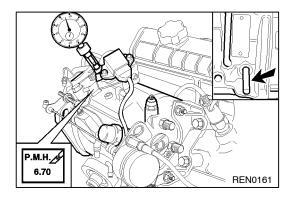
NOTE


The measuring pin and guide bush can only be supplied and used as a set.



- Insert an 8 mm diameter locking pin in the hole of torxbolt.
- Apply pressure just before TDC on this pin until it engages the recess in the crankshaft.

(10)Now turn the flange with sprocket adaptor MB996037 counterclockwise until the adjustment value is obtained as shown on the pump \pm 0.02 mm.

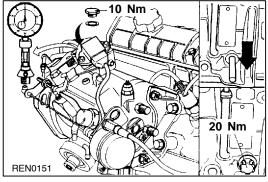

(11) Locate sprocket stopper MB996043.

Fix the bracket with the two bolts supplied with the set. Secure the bracket with bolt **F** so that it is free from play.

Caution

The pump sprocket must not be displaced (the pointer of the micrometer must not move).

- (12)Insert Hexagon socket spanner MB996036 in the nut assembly and tighten the assembly steadily (turning counter-clockwise) to 70 Nm.
- (13)Remove sprocket stopper MB996043, the locking pin and clock gauge.
 - Check the injection timing.



CHECKING THE INJECTION TIMING

- (1) Turn the crankshaft 1 3/4 revolutions clockwise.
- (2) Position the clock gauge and make sure that the plunger is pressed in at least 0.2 mm.
 - Secure the clock gauge and set it at zero.
- (3) Turn the crankshaft **exactly** to TDC (clockwise). To achieve this:
 - Insert an 8 mm diameter locking pin in the hole of torxbolt
 - Apply pressure just before TDC on this pin until it engages the recess in the crankshaft.
- (4) Read off the value on the clock gauge.

This value should not differ more than 0.02 mm as the set value shown on the pump control arm.

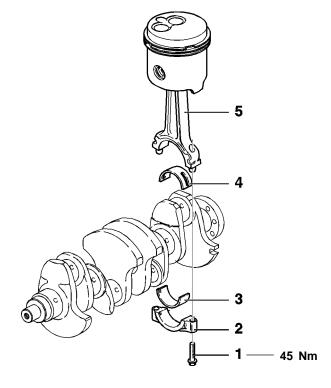
If the value is not obtained, the pump has to be adjusted.

MEASURING TOOL REMOVAL

(1) Remove measuring device adaptor MB996030 with the clock gauge. Fit the plug with a new O-ring.

Tighten the plug to the 10 Nm.

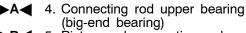
Remove the locking pin and fit the torxbolt with a new sealing washer.

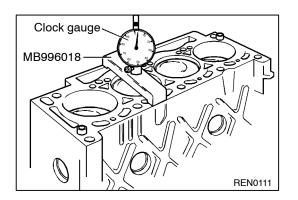

Tighten the plug to 20 Nm.

July 1996

20. PISTONS AND CONNECTING RODS

REMOVAL AND INSTALLATION

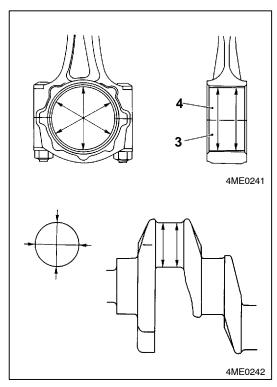

Lubricate all internal parts with engine oil during reassembly.


REN0110

Removal steps

- 1. Bolt
- 2. Connecting rod cap
- ▶A 3. Connecting rod lower bearing (big-end bearing)

5. Piston and connecting rod assembly

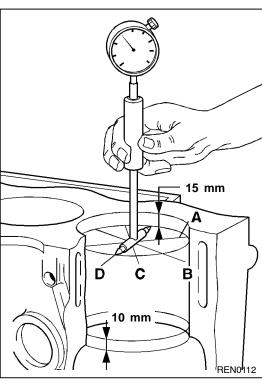

INSPECTION

PISTON AND CONNECTING ROD

Piston height above cylinder block

Caution

- Always check the projecting height of the pistons above the cylinder block. This has a direct influence on engine performance.
- (1) Turn each piston to TDC.
- (2) Check the projecting height of the piston at each cylinder.
- (3) If the average deviates from the standard value, measure the clearance at each piston and connecting rod and the crankshaft.


CONNECTING ROD BEARINGS

Caution

- Do not fit old connecting rod bearings 3, 4 if they are badly worn.
- If any one of the connecting rod bearings 3, 4 is defective, the bearings should be replaced as a set.

Clearance between connecting rod and crankshaft

(1) Replace the part in question if the clearance exceeds the limit value.

PISTON/CONNECTING ROD AND CYLINDER BLOCK

(1) Measure the cylinder bores.

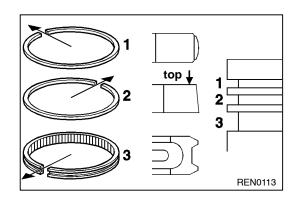
Measure four times at 45° intervals and at right-angles to the gasket face, just under the top piston ring travel limit.

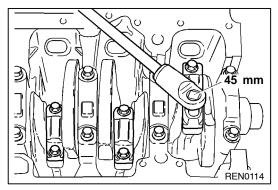
Add the results of these measurements together and divide the total by eight.

Measure once just above the lower travel limit.

Divide this value by two.

Add the values together; this is the cylinder diameter.


INSTALLATION SERVICE POINTS


►A CONNECTING ROD BEARING INSTALLATION

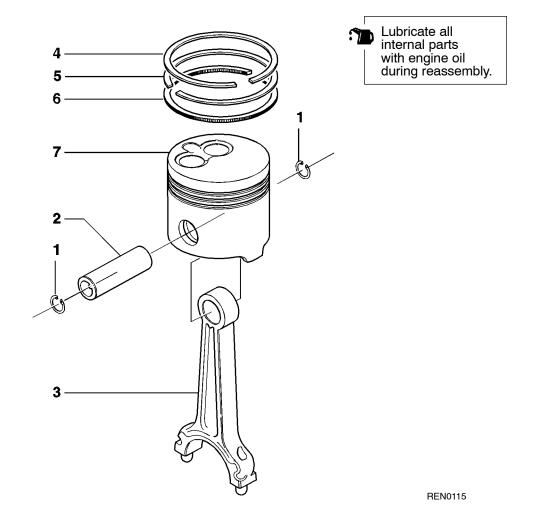
(1) Lubricate the bearings with engine oil.

Caution

 Make sure that no engine oil runs in between the bearing, connecting rod and bearing cap.

▶B**<** PISTON AND CONNECTING ROD INSTALLATION

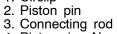
Caution


- Ensure that the piston ring gaps A are correctly positioned.
- Take care not to damage the piston crown (combustion chamber) B.
- Take care not to strike the connecting rod against the oil jet.
- (1) Lightly coat the big-end journal, cylinder wall and piston with engine oil.
- (2) Fit the connecting rod with the mark facing towards the intermediate shaft side.
- (3) Fit the connecting rod cap with the mark facing towards the intermediate shaft side.
- (4) Fit **new bolts** and tighten them to the specified torque.

NOTE

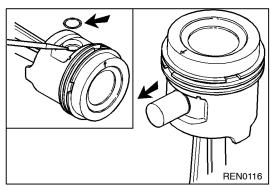
Check that the crankshaft rotates smoothly.

21. PISTONS AND PISTON PINS


REMOVAL AND INSTALLATION

Removal steps

1. Circlip



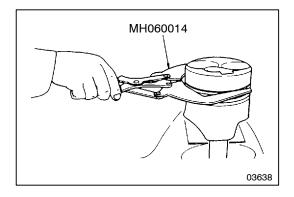
4. Piston ring No. 1
5. Piston ring No. 2

6. Oil ring

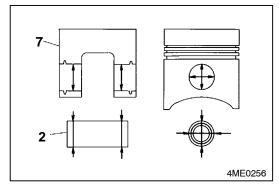
7. Piston

▲A▶ PISTON PIN REMOVAL

(1) Remove the circlips.

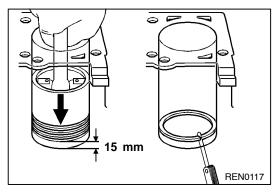

- (2) Remove the piston pin 2.

REMOVAL SERVICE POINTS


© Mitsubishi Motors Corporation

July 1996

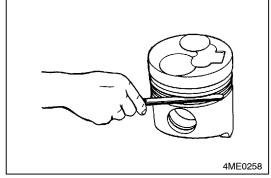
PWEE9602


▲B▶ PISTON RING REMOVAL

INSPECTION

PISTON PIN/CONNECTING ROD/PISTON

(1) Measure the clearance between the piston pin 2 and the piston 7. Replace the part in question if the clearance exceeds the limit value.

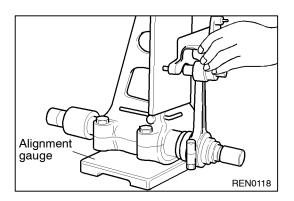


PISTON RING GAP

- (1) Insert the piston rings **4**, **5**, **6** in the cylinder bore of the cylinder block with the aid of the piston **7**.
- (2) Hold the piston rings **4**, **5**, **6** in this position and measure the ring gap with a feeler gauge. Fit new piston rings if the measured value exceeds the limit value.

Caution

- Use the piston 7 so that the piston rings 4, 5,
 6 are aligned in the cylinder bore at right-angles to the wall.
- The piston rings 4, 5, 6 must be located in the lower part of the cylinder bore which is subjected to less wear.
- Replace the piston rings 4, 5, 6 as a set.

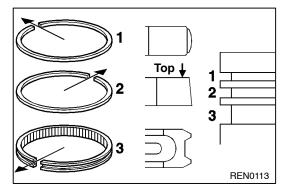

CLEARANCE BETWEEN PISTON RING AND PISTON RING GROOVE

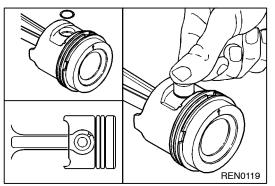
(1) Replace the part in question if the clearance exceeds the limit value.

Caution

- Always use new piston rings for measuring.
- Remove all traces of carbon deposits from the piston ring grooves in the piston 7 before measuring. Measure the lateral clearance around the entire circumference of the piston ring groove.
- The piston rings must be replaced as a set.

PWEE9602


CURVATURE AND TWIST OF CONNECTING ROD


(1) Measure the curvature and the twist of the connecting rod 3.

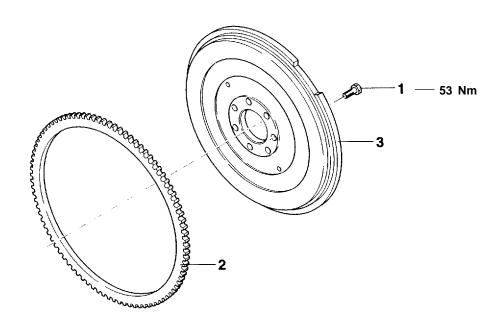
Replace the connecting rod if the limit values are exceeded.

Caution

- Installed connecting rod 3, with upper and lower connecting rod bearings in place, in the connecting rod alignment tool.
- Tighten the connecting rod cap in accordance with the specified procedure.

INSTALLATION SERVICE POINTS

►A PISTON RING INSTALLATION

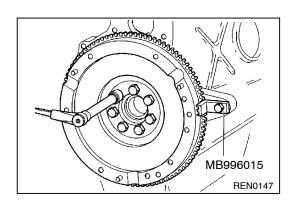

- (1) Fit the oil ring 6.
- (2) Fit the No. 2 piston ring 5.
- (3) Fit the No. 1 piston ring 4.
 Lubricate the piston rings with engine oil.
 Position the piston ring gaps at an angle of 120° to each other.

▶B PISTON PIN INSTALLATION

- (1) Fit the circlip in the piston 7.
- (2) Smear a thin layer of engine oil on the piston pin 2 before fitting. Install the connecting rod 3 with the oil passage facing away from the combustion chamber in the piston.
- (3) Insert the piston pin.
- (4) Fit the circlip in the piston 7.

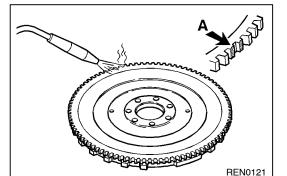
22. FLYWHEEL

REMOVAL AND INSTALLATION



REN0120

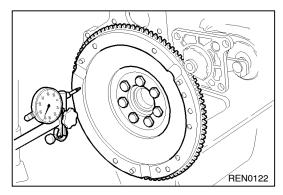
Removal steps

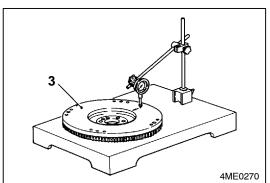

- 1. Bolt
- 2. Flywheel ring gear
- 3. Flywheel

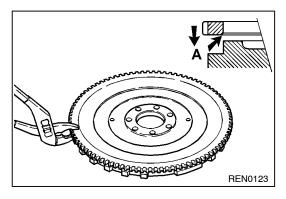
REMOVAL SERVICE POINTS

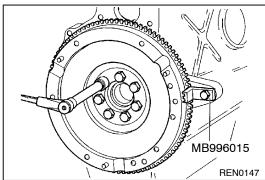
▲A► FLYWHEEL REMOVAL

Use flywheel stopper MB996015 to hold the flywheel during removal.


◆B▶ FLYWHEEL RING GEAR REMOVAL


- (1) Examine the flywheel ring gear **2** for damage and abnormal wear and replace if necessary.
- (2) Heat the flywheel ring gear **2** evenly with an oxyacetylene torch, or a similar device for applying heat locally, and then remove the ring gear by tapping around its entire circumference.


© Mitsubishi Motors Corporation


July 1996

PWEE9602

INSPECTION

FLYWHEEL

Axial throw

(1) If the axial throw exceeds the limit value, check the flywheel for a loose bolt 1 or for a defective connection to the crankshaft. Repair or replace as necessary.

Deformation of the friction surface

(1) If necessary, replace the flywheel 3.

NOTE

A new flywheel is always supplied complete with the ring gear.

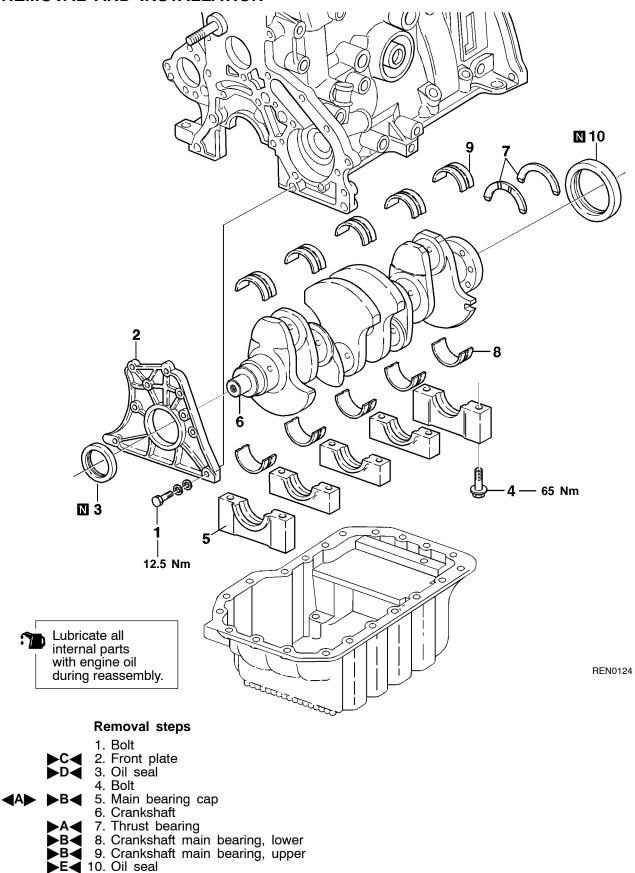
INSTALLATION SERVICE POINTS

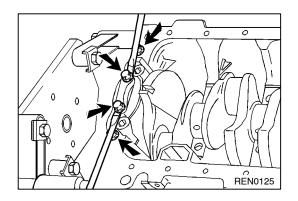
►A FLYWHEEL RING GEAR INSTALLATION

- (1) Heat the flywheel ring gear **2** with an oxyacetylene torch, or a similar device for applying heat locally, to approximately 220°C.
- (2) Fit the flywheel ring gear 2 on the flywheel 3, with the chamfered side facing towards the flywheel.A: Chamfered side of flywheel ring gear.

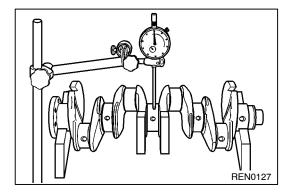
▶B **FLYWHEEL INSTALLATION**

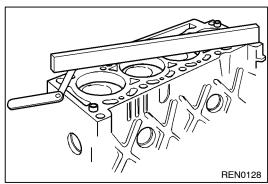
(1) Remove all traces of sealant, oil and other substances.

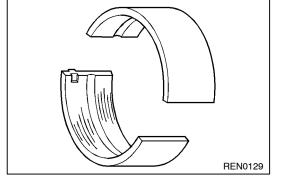

Caution


The flywheel can be fitted in one way only. This is because the bolt hole pattern is asymmetrical.

- (2) Coat the mating face of the flywheel to the crankshaft with a locking agent (Part No. 1161059-1).
- (3) Use new bolts and coat the screw threads with liquid gasket cement (Part No. 277917-1).
- (4) Use flywheel stopper MB996015 and tighten the bolts 53 Nm.


23. CRANKSHAFT AND CYLINDER BLOCK


REMOVAL AND INSTALLATION



REN0126

REMOVAL SERVICE POINTS

▲A► MAIN BEARING CAP REMOVAL

(1) Remove the retaining bolts.

NOTE

To remove No. 1 bearing cap (flywheel end) with screwdrivers, two M7 bolts must be fitted in the bearing cap and two M7 bolts in the cylinder block.

INSPECTION

CRANKSHAFT

Ovality and taper of main bearing journals and big-end bearing journals

(1) Replace the crankshaft if the limit value is exceeded.

Out-of-roundness

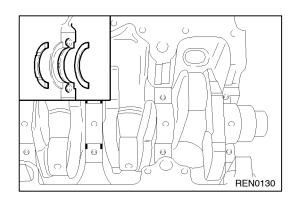
(1) Support the crankshaft **6** at No. 1 journal and No. 5 journal and measure the out-of-roundness at No. 3 journal. Replace the crankshaft if the limit value is exceeded.

NOTE

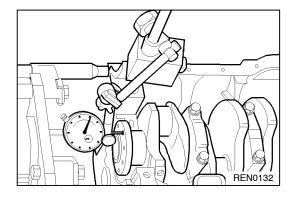
Turn the crankshaft through one revolution and measure the relative out-of-roundness of the main bearing journals.

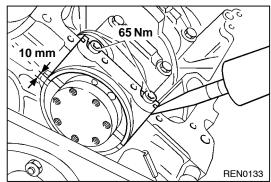
DEFORMATION OF THE CYLINDER BLOCK

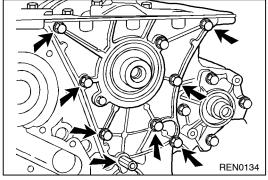
(1) Replace the cylinder block if the limit value for deformation is exceeded.


MAIN BEARINGS

Do not reuse the main bearings 8, 9 if they are badly worn or otherwise defective.


NOTE


When replacing the bearing, always replace the upper and lower bearings as a set.


© Mitsubishi Motors Corporation

65 Nm

Mitsubishi Motors Corporation **July 1996**

INSTALLATION SERVICE POINTS ►A THRUST WASHER INSTALLATION

(1) Fit the thrust washers 7 at No. 2 journal on the crankshaft

Caution

 Fit the thrust washers 7 with the oil grooves A facing outwards.

▶B CRANKSHAFT MAIN BEARING / MAIN BEARING CAPS INSTALLATION

Caution

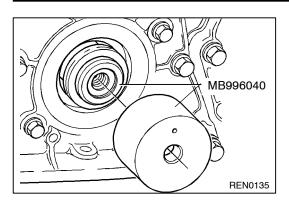
- The main bearing caps are marked.
- (1) Start by installing bearing cap No. 2. The bolts should be tightened to the specified torque.
- (2) Check that the crankshaft rotates smoothly.
- (3) Move the crankshaft backwards and forwards in the longitudinal direction and check whether the end play is within the specified tolerance range.

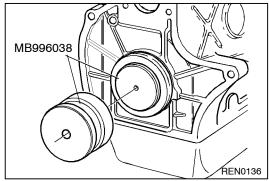
- (4) Fit the bearing cap in the cylinder block so that the mating faces are positioned about 10 mm away from each other.
- (5) Centre the bearing cap with the two socket-head screws.
- (6) Pack the two recesses in the bearing cap with sealant.

NOTE

The two recesses should be filled down to the bottom edge.

(7) Tighten the two socket-head screws to the specified torque.


Remove excessive sealant.


▶C FRONT PLATE INSTALLATION

(1) Apply an even, uninterrupted bead of sealant to the front plate. (Maximum bead width 2 mm).

Caution

- Make sure that the surface to which the sealant is applied is free of dirt and other impurities.
- Check that the two fitted sleeves are present.

▶D CRANKSHAFT FRONT OIL SEAL INSTALLATION

- (1) Coat the lip of the oil seal with a thin layer of engine oil.
- (2) Locate the oil seal installer guide MB996040 over the crankshaft.
- (3) Locate the oil seal over the oil seal installer guide.
- (4) Fit the oil seal with oil seal installer MB996040.

►E CRANKSHAFT REAR OIL SEAL INSTALLATION

- (1) Coat the lip of the oil seal with a thin layer of engine oil.
- (2) Locate the installer oil seal guide MB996038 over the crankshaft.
- (3) Locate the oil seal over the oil seal installer guide.
- (4) Fit the oil seal with oil seal installer MB996038.

NOTES